ﻻ يوجد ملخص باللغة العربية
In this paper, we extend the notion of Lyndon word to transfinite words. We prove two main results. We first show that, given a transfinite word, there exists a unique factorization in Lyndon words that are densely non-increasing, a relaxation of the condition used in the case of finite words. In the annex, we prove that the factorization of a rational word has a special form and that it can be computed from a rational expression describing the word.
A generalized lexicographical order on infinite words is defined by choosing for each position a total order on the alphabet. This allows to define generalized Lyndon words. Every word in the free monoid can be factorized in a unique way as a nonincr
In this paper we compare two finite words $u$ and $v$ by the lexicographical order of the infinite words $u^omega$ and $v^omega$. Informally, we say that we compare $u$ and $v$ by the infinite order. We show several properties of Lyndon words express
A Lyndon word is a non-empty word strictly smaller in the lexicographic order than any of its suffixes, except itself and the empty word. In this paper, we show how Lyndon words can be used in the distributed control of a set of n weak mobile robots.
Given a (finite or infinite) subset $X$ of the free monoid $A^*$ over a finite alphabet $A$, the rank of $X$ is the minimal cardinality of a set $F$ such that $X subseteq F^*$. We say that a submonoid $M$ generated by $k$ elements of $A^*$ is {em $k$
We have reviewed some results on quantized shuffling, and in particular, the grading and structure of this algebra. In parallel, we have summarized certain details about classical shuffle algebras, including Lyndon words (primes) and the construction