ﻻ يوجد ملخص باللغة العربية
This paper presents a comparative study of six soft computing models namely multilayer perceptron networks, Elman recurrent neural network, radial basis function network, Hopfield model, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast of Czech Republic. The soft computing models were trained and tested using the actual hourly load data for seven years. A comparison of the proposed techniques is presented for predicting 2 day ahead demands for electricity. Simulation results indicate that hybrid fuzzy neural network and radial basis function networks are the best candidates for the analysis and forecasting of electricity demand.
Accurate short-term load forecasting is essential for efficient operation of the power sector. Predicting load at a fine granularity such as individual households or buildings is challenging due to higher volatility and uncertainty in the load. In ag
We present in this paper a model for forecasting short-term power loads based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers understanding of the task by virtue of different neural network building
Short-term load forecasting (STLF) is essential for the reliable and economic operation of power systems. Though many STLF methods were proposed over the past decades, most of them focused on loads at high aggregation levels only. Thus, low-aggregati
Appliance-level load forecasting plays a critical role in residential energy management, besides having significant importance for ancillary services performed by the utilities. In this paper, we propose to use an LSTM-based sequence-to-sequence (seq
Electricity load forecasting is crucial for the power systems planning and maintenance. However, its un-stationary and non-linear characteristics impose significant difficulties in anticipating future demand. This paper proposes a novel ensemble deep