ﻻ يوجد ملخص باللغة العربية
The impact of the normal-state pseudogap, present in all optimal and underdoped HTS cuprates, on critical currents and critical temperature is surveyed. With the opening of the pseudogap around a doping state of p=0.19 the condensation energy and superfluid density are rapidly suppressed due to reduction in the normal-state spectral weight. Even by optimal doping (p=0.16) these measures of the strength of superconductivity are diminished by up to 40%. This results in a sharp reduction in critical currents and irreversibility field, respectively. The optimal doping state where these properties are maximised is therefore not at maximum Tc but in the lightly overdoped region where the pseudogap energy falls to zero at p=0.19. The presence of impurities and grain boundaries further heightens these effects.
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near Tc in zero magnetic field. Both second and third harmonic generation are measured to identif
One of the key motivations for the development of atomically resolved spectroscopic imaging STM (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudoga
We develop a model for high-Tc superconductors based on an electronic phase separation where low-and high-density domains are formed. At low temperatures this system may act as a granular superconductor forming an array of Josephson junctions. Cuprat
A fundamental question of high-temperature superconductors is the nature of the pseudogap phase which lies between the Mott insulator at zero doping and the Fermi liquid at high doping p. Here we report on the behaviour of charge carriers near the ze
Large pulsed magnetic fields up to 60 Tesla are used to suppress the contribution of superconducting fluctuations (SCF) to the ab-plane conductivity above Tc in a series of YBa2Cu3O(6+x). These experiments allow us to determine the field Hc(T) and th