ﻻ يوجد ملخص باللغة العربية
In this letter we show that the late-time scaling state in spinodal decomposition is not unique. We performed lattice Boltzmann simulations of the phase-ordering of a 50%-50% binary mixture using as initial conditions for the phase-ordering both a symmetric morphology that was created by symmetric spinodal decomposition and a morphology of one phase dispersed in the other, created by viscoelastic spinodal decomposition. We found two different growth laws at late times, although both simulations differ only in the early time dynamics. The new scaling state consists of dispersed droplets. The growth law associated with this scaling state is consistent with a $Lsim t^{1/2}$ scaling law.
We simulate late-stage coarsening of a 3-D symmetric binary fluid. With reduced units l,t (with scales set by viscosity, density and surface tension) our data extends two decades in t beyond earlier work. Across at least four decades, our own and oth
We study the phase transition dynamics of a fluid system in which the particles diffuse anisotropically in space. The motivation to study such a situation is provided by systems of interacting magnetic colloidal particles subject to the Lorentz force
Spinodal decomposition is a ubiquitous phenomenon leading to phase separation from a uniform solution. We show that a spinodal decomposition occurs in a unique combination of two rutile compounds of TiO2 and VO2, which are chemically and physically d
Multifragmentation of a ``fused system was observed for central collisions between 32 MeV/nucleon 129Xe and natSn. Most of the resulting charged products were well identified thanks to the high performances of the INDRA 4pi array. Experimental higher
Microscopic stress fields are widely used in molecular simulations to understand mechanical behavior. Recently, decomposition methods of multibody forces to central force pairs between the interacting particles have been proposed. Here, we introduce