ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical behaviour in $La_{0.5}Sr_{0.5}CoO_3$

138   0   0.0 ( 0 )
 نشر من قبل Pratap Raychaudhuri
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the critical behaviour in $La_{0.5}Sr_{0.5}CoO_{3}$ near the paramagnetic-ferromagnetic transition temperature. We have analysed our dc magnetisation data near the transition temperature with the help of modified Arrott plots, Kouvel-Fisher method. We have determined the critical temperature $T_c$ and the critical exponents, $beta$ and $gamma$. With these values of $T_c$, $beta$ and $gamma$, we plot $M/(1-T/T_c)^{beta}$ vs $H/(1-T/T_c)^{gamma}$. All the data collapse on one of the two curves. This suggests that the data below and above $T_c$ obeys scaling, following a single equation of state.

قيم البحث

اقرأ أيضاً

228 - Pallab Bag , P. R. Baral , 2018
We report the structural, static, and dynamic properties of Cr$_{0.5}$Fe$_{0.5}$Ga by means of powder x-ray diffraction, magnetization, heat capacity, magnetic relaxation, and magnetic memory effect measurements. DC magnetization and AC susceptibilit y studies reveal a spin-glass transition at around $T_{rm f} simeq 22$~K. An intermediate value of the relative shift in freezing temperature $delta T_{rm f} simeq 0.017$, obtained from the AC susceptibility data reflects the formation of cluster spin-glass states. The frequency dependence of $T_{rm f}$ is also analyzed within the framework of dynamic scaling laws. The analysis using power law yields a time constant for a single spin flip $tau* simeq 1.1times10^{-10}$~s and critical exponent $z u^{prime}=4.2pm0.2$. On the other hand, the Vogel-Fulcher (VF) law yields the time constant for a single spin flip $tau_0 simeq 6.6times10^{-9}$~s, VF temperature $T_{rm 0}=21.1pm0.1$~K, and an activation energy $E_{rm a}/k_{rm B} simeq 16$~K. The value of $tau*$ and $tau_0$ along with a non-zero value of $T_{rm 0}$ provide further evidence for the cluster spin-glass behaviour. The magnetic field dependent $T_{rm f}$ follows the de Almeida-Thouless line with a non-mean-field type instability, reflecting either a different universality class or strong anisotropy in the spin system. A detailed non-equilibrium dynamics study via relaxation and memory effect experiments demonstrates striking memory effects. All the above observations render a cluster spin-glass behaviour which is triggered by magnetic frustration due to competing antiferromagnetic and ferromagnetic interactions and magnetic site disorder. Moreover, the asymmetric response of magnetic relaxation with respect to the change in temperature, below $T_{rm f}$ can be explained by the hierarchical model.
125 - C. F. Chang , Z. Hu , Hua Wu 2009
Using Co-L_(2,3) and O-K x-ray absorption spectroscopy, we reveal that the charge ordering in La_(1.5)Sr_(0.5)CoO4 involves high spin (S=3/2) Co^2+ and low spin (S=0) Co^3+ ions. This provides evidence for the spin blockade phenomenon as a source for the extremely insulating nature of the La_(2-x)Sr_(x)CoO4 series. The associated e_g^2 and e_g^0 orbital occupation accounts for the large contrast in the Co-O bond lengths, and in turn, the high charge ordering temperature. Yet, the low magnetic ordering temperature is naturally explained by the presence of the non-magnetic (S=0) Co^3+ ions. From the identification of the bands we infer that La_(1.5)Sr_(0.5)CoO4 is a narrow band material.
The temperature dependence of ultrafast photoinduced reflectivity transients is reported in Nd$_{0.5}$Sr$_{0.5}$MnO$_{3}$ thin film. The photoinduced reflectivity shows a complex response with very different temperature dependences on different times cales. The response on the sub-ps timescale appears to be only weakly sensitive to the 270K-metal-insulator phase transition. Below $sim 160$ K the sub-ps response displays a two component behavior indicating inhomogeneity of the film resulting from the substrate induced strain. On the other hand, the slower response on the 10-100 ps timescale is sensitive only to the metal-insulator phase transition and is in agreement with some previously published results. The difference in the temperature dependences of the responses on nanosecond and $mu $s timescales indicates that thermal equilibrium between the different degrees of fredom is established relatively slowly - on a nanosecond timescale.
We investigate the ultra-sharp jump in the isothermal magnetization and the resistivity in the polycrystalline $Sm_{0.5}(Ca_{0.5-y}Sr_{y})MnO_3$ $(y = 0, 0.1, 0.2, 0.25, 0.3, 0.5)$ compounds. The critical field $(H_{cr})$, required for the ultra-shar p jump, decreases with increase of `Sr concentration, i.e. with increase of average A-site ionic radius $langle r_Arangle$. The magnetotransport data indicate that the phase separation increases with the increase of $langle r_Arangle$, i.e. with $y$. The dependency of $H_{cr}$ with magnetic field sweep rate reveals that the ultra-sharp jump from antiferromagnetic (AFM) state to the ferromagnetic (FM) state is of martensitic in nature. Our two-band double exchange model Hamiltonian calculations show that the `Sr doping induces the ferromagnetic clusters in the antiferromagnetic insulating phase and in turn reduces the critical field. In the end we present a phenomenological picture obtained from our combined experimental and theoretical study.
In this study, we demonstrated experimentally and theoretically that the charge transport mechanism in amorphous Hf$_{0.5}$Zr$_{0.5}$O$_2$ is phonon-assisted tunneling between traps like in HfO$_2$ and ZrO$_2$. The thermal trap energy of 1.25 eV and optical trap energy of 2.5 eV in Hf$_{0.5}$Zr$_{0.5}$O$_2$ were determined based on comparison of experimental data on transport with different theories of charge transfer in dielectrics. A hypothesis that oxygen vacancies are responsible for the charge transport in Hf$_{0.5}$Zr$_{0.5}$O$_2$ was discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا