ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge transport in amorphous Hf$_{0.5}$Zr$_{0.5}$O$_2$

113   0   0.0 ( 0 )
 نشر من قبل Damir Islamov R.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, we demonstrated experimentally and theoretically that the charge transport mechanism in amorphous Hf$_{0.5}$Zr$_{0.5}$O$_2$ is phonon-assisted tunneling between traps like in HfO$_2$ and ZrO$_2$. The thermal trap energy of 1.25 eV and optical trap energy of 2.5 eV in Hf$_{0.5}$Zr$_{0.5}$O$_2$ were determined based on comparison of experimental data on transport with different theories of charge transfer in dielectrics. A hypothesis that oxygen vacancies are responsible for the charge transport in Hf$_{0.5}$Zr$_{0.5}$O$_2$ was discussed.



قيم البحث

اقرأ أيضاً

La$_{1.5}$Sr$_{0.5}$CoMn$_{0.5}$Fe$_{0.5}$O$_{6}$ (LSCMFO) compound was prepared by solid state reaction and its structural, electronic and magnetic properties were investigated. The material forms in rhombohedral $Rbar{3}c$ structure, and the presen ce of distinct magnetic interactions leads to the formation of a Griffiths phase above its FM transition temperature (150 K), possibly related to the nucleation of small short-ranged ferromagnetic clusters. At low temperatures, a spin glass-like phase emerges and the system exhibits both the conventional and the spontaneous exchange bias (EB) effects. These results resemble those reported for La$_{1.5}$Sr$_{0.5}$CoMnO$_{6}$ but are discrepant to those found when Fe partially substitutes Co in La$_{1.5}$Sr$_{0.5}$(Co$_{1-x}$Fe$_{x}$)MnO$_{6}$, for which the EB effect is observed in a much broader temperature range. The unidirectional anisotropy observed for LSCMFO is discussed and compared with those of resembling double-perovskite compounds, being plausibly explained in terms of its structural and electronic properties.
The perovskite TbFe$_{0.5}$Cr$_{0.5}$O$_3$ shows two anomalies in the magnetic susceptibility at $T_N$ = 257K and $T_{SR}$ = 190K which are respectively, the antiferromagnetic and spin reorientation transition that occur in the Fe/Cr sublattice. Anal ysis of the magnetic susceptibility reveals signatures of Griffiths-like phase in this compound. Neutron diffraction analysis confirms that, as the temperature is reduced from 350K, a spin reorientation transition from $Gamma_2$ (F$_x$, C$_y$, G$_z$) to $Gamma_4$ (G$_x$, A$_y$, F$_z$) occurs at $T_N$ = 257K and subsequently, a second spin reorientation takes place from $Gamma_4$ (G$_x$, A$_y$, F$_z$) to $Gamma_2$ (F$_x$, C$_y$, G$_z$) at $T_{SR}$ = 190K. The $Gamma_2$ (F$_x$, C$_y$, G$_z$) structure is stable until 7.7K where an ordered moment of 7.74(1)$mu_mathrm B$/Fe$^{3+}$(Cr$^{3+}$) is obtained from neutron data refinement. In addition to the long-range order of the magnetic structure, indication of diffuse magnetic scattering at 7.7K is evident, thereby lending support to the Griffiths-like phase observed in susceptibility. At 7.7K, Tb develops a ferromagnetic component along the crystallographic $a$ axis. Thermal conductivity, and spin-phonon coupling of TbFe$_{0.5}$Cr$_{0.5}$O$_3$ through Raman spectroscopy are studied in the present work. An antiferromagnetic structure with ($uparrow downarrow uparrow downarrow$) arrangement of Fe/Cr spins is found in the ground state through first-principles energy calculations which supports the experimental magnetic structure at 7.7K. The spin-resolved total and partial density of states are determined showing that TbFe$_{0.5}$Cr$_{0.5}$O$_3$ is insulating with a band gap of $sim 0.12$ (2.4) eV within GGA (GGA+$U$) functionals.
We have studied the critical behaviour in $La_{0.5}Sr_{0.5}CoO_{3}$ near the paramagnetic-ferromagnetic transition temperature. We have analysed our dc magnetisation data near the transition temperature with the help of modified Arrott plots, Kouvel- Fisher method. We have determined the critical temperature $T_c$ and the critical exponents, $beta$ and $gamma$. With these values of $T_c$, $beta$ and $gamma$, we plot $M/(1-T/T_c)^{beta}$ vs $H/(1-T/T_c)^{gamma}$. All the data collapse on one of the two curves. This suggests that the data below and above $T_c$ obeys scaling, following a single equation of state.
The atomic environments involved in the magnetostriction effect in CoFe$_2$O$_4$ and La$_{0.5}$Sr$_{0.5}$CoO$_3$ polycrystalline samples have been identified by differential extended x-ray absorption fine structure (DiffEXAFS) spectroscopy. We demons trate that cobalt atoms at octahedral sites are responsible for their magnetostriction. The analysis of DiffEXAFS data indicates that the local-site magnetostrictive strains of Co atoms are reversed in these two oxides, in agreement with the macroscopic magnetostriction. For the CoFe$_2$O$_4$ spinel, a large negative strain along the (100) direction has been determined for the CoO$_6$ octahedron causing a tetragonal contraction in contrast with the La$_{0.5}$Sr$_{0.5}$CoO$_3$ perovskite, where a positive moderate strain along the (100) direction was found resulting in a tetragonal expansion. The different local-site magnetostriction is understood in terms of the different valence and spin state of the Co atoms for the two oxides. The macroscopicmagnetostriction would be explained then by the relative change in volume, either contraction in CoFe$_2$O$_4$ or expansion in La$_{0.5}$Sr$_{0.5}$CoO$_3$, when the tetragonal axis of the Co site is reoriented under an externally applied magnetic field.
99 - Jyoti Krishna , T. Maitra 2019
In view of the recent experimental predictions of a weak structural transition in CoV$_{2}$O$_{4}$ we explore the possible orbital order states in its low temperature tetragonal phases from first principles density functional theory calculations. We observe that the tetragonal phase with I4$_1/amd$ symmetry is associated with an orbital order involving complex orbitals with a reasonably large orbital moment at Vanadium sites while in the phase with I4$_1/a$ symmetry, the real orbitals with quenched orbital moment constitute the orbital order. Further, to study the competition between orbital order and electron itinerancy we considered Mn$_{0.5}$Co$_{0.5}$V$_{2}$O$_{4}$ as one of the parent compounds, CoV$_{2}$O$_{4}$, lies near itinerant limit while the other, MnV$_{2}$O$_{4}$, lies deep inside the orbitally ordered insulating regime. Orbital order and electron transport have been investigated using first principles density functional theory and Boltzmann transport theory in CoV$_{2}$O$_{4}$, MnV$_{2}$O$_{4}$ and Mn$_{0.5}$Co$_{0.5}$V$_{2}$O$_{4}$. Our results show that as we go from MnV$_{2}$O$_{4}$ to CoV$_{2}$O$_{4}$ there is enhancement in the electrons itinerancy while the nature of orbital order remains unchanged.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا