ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of biquadratic exchange on the spectrum of elementary excitations in spin ladders

158   0   0.0 ( 0 )
 نشر من قبل Sven Brehmer
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the influence of biquadratic exchange interactions on the low-lying excitations of a S=1/2-ladder using perturbation theory, numerical diagonalization of finite systems and exact results for ladders with matrix product ground states. We consider in particular the combination of biquadratic exchange interactions corresponding to ring exchange on the basic ladder plaquette. We find that a moderate amount of ring exchange reduces the spin gap substantially and makes equal bilinear exchange on legs and rungs consistent with experimentally observed spectra.

قيم البحث

اقرأ أيضاً

The weakly coupled quasi-one-dimensional spin ladder compound (CH$_3$)$_2$CHNH$_3$CuCl$_3$ is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and th e associated Goldstone mode are detected and found to be similar to those in a reference 3D quantum magnet. However, for the upper two massive magnon branches the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2 <= J_parallel/J_perpendicular <= 1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.
A theoretical study of the magnetization curves of quasiperiodic magnetic multilayers is presented. We consider structures composed by ferromagnetic films (Fe) with interfilm exchange coupling provided by intervening nonferromagnetic layers (Cr). The theory is based on a realistic phenomenological model, which includes the following contributions to the free magnetic energy: Zeeman, cubic anisotropy, bilinear and biquadratic exchange energies. The experimental parameters used here are based on experimental data recently reported, which contain sufficiently strong biquadratic exchange coupling.
110 - Pei Sun , Zhi-Rong Xin , Yi Qiao 2019
The thermodynamic properties of the XXZ spin chain with integrable open boundary conditions at the gaped region (i.e., the anisotropic parameter $eta$ being a real number) are investigated.It is shown that the contribution of the inhomogeneous term i n the $T-Q$ relation of the ground state and elementary excited state can be neglected when the size of the system $N$ tends to infinity. The surface energy and elementary excitations induced by the unparallel boundary magnetic fields are obtained.
Thermodynamic properties and elementary excitations in $S=1/2$ one-dimensional Heisenberg antiferromagnet KCuGaF$_6$ were investigated by magnetic susceptibility, specific heat and ESR measurements. Due to the Dzyaloshinsky-Moriya interaction with al ternating $D$-vectors and/or the staggered $g$-tensor, the staggered magnetic field is induced when subjected to external magnetic field. Specific heat in magnetic field clearly shows the formation of excitation gap, which is attributed to the staggered magnetic field. The specific heat data was analyzed on the basis of the quantum sine-Gordon (SG) model. We observed many ESR modes including one soliton and three breather excitations characteristic of the quantum SG model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا