ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvation effects on kinetics of methylene chloride reactions in sub- and supercritical water: theory, experiment, and ab initio calculations

409   0   0.0 ( 0 )
 نشر من قبل T. A. Arias
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of the CH2Cl2 neutral/acidic hydrolysis reaction from ambient to supercritical conditions (25 C to 600 C at 246 bar) is explored. Of primary interest is the effect of the changing dielectric behavior of the water solvent over this temperature range on this reaction. Experiments reveal that significant CH2Cl2 hydrolysis occurs under subcritical temperatures, while relatively little hydrolysis occurs under supercritical conditions. These trends cannot be explain by simple Arrhenius behavior. A combination of Kirkwood theory and ab initio modeling provides a means of successfully accounting for this behavior both qualitatively and quantitatively. The results show that increases in the activation energy and a changing reaction profile with a decreasing dielectric constant provide a mechanism for a slowing of the reaction at higher temperatures by as much as three orders of magnitude. These solvent effects are captured quantitatively in a correction factor to the Arrenius form of the rate constant, which is incorporated into a global rate expression proposed for CH2Cl2 hydrolysis that provides good predictions of the experimental data.


قيم البحث

اقرأ أيضاً

Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (S CAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I{it h} at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.
We present ab-initio calculations of the excited state properties of liquid water in the framework of Many-Body Greens function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and op tical spectra, and the results are averaged over the different configurations. The optical absorption spectra with the inclusion of excitonic effects are calculated by solving the Bethe-Salpeter equation. These calculations are made possible by exploiting the insensitivity of screening effects to a particular configuration. The resulting spectra are strongly modified by many-body effects, both concerning peak energies and lineshapes, and are in good agreement with experiments.
202 - S. Quaglioni 2015
An {em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interact ions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review {em ab initio} calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the {em ab initio} no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the $A$-nucleon system are coupled to $(A-a)+a$ target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
Nuclear quantum effects, such as zero-point energy and tunneling, cause significant changes to the structure and dynamics of hydrogen bonded systems such as liquid water. However, due to the current inability to simulate liquid water using an exact d escription of its electronic structure, the interplay between nuclear and electronic quantum effects remains unclear. Here we use simulations that incorporate the quantum mechanical nature of both the nuclei and electrons to provide a fully ab initio determination of the particle quantum kinetic energies, free energy change upon exchanging hydrogen for deuterium and the isotope fractionation ratio in water. These properties, which selectively probe the quantum nature of the nuclear degrees of freedom, allow us to make direct comparison to recent experiments and elucidate how electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.
We show, by means of ab-initio calculations, that electron-electron correlations play an important role in potassium-doped picene ($K_x$-picene), recently characterized as a superconductor with $T_c = 18K$. The inclusion of exchange interactions by m eans of hybrid functionals reproduces the correct gap for the undoped compound and predicts an antiferromagnetic state for $x=3$, where superconductivity has been observed. The latter finding is compatible with a sizable value of the correlation strength, in agreement with simple estimates. Our results highlight the similarity between potassium-doped picene and alkali-doped fulleride superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا