ﻻ يوجد ملخص باللغة العربية
The nature of the CH2Cl2 neutral/acidic hydrolysis reaction from ambient to supercritical conditions (25 C to 600 C at 246 bar) is explored. Of primary interest is the effect of the changing dielectric behavior of the water solvent over this temperature range on this reaction. Experiments reveal that significant CH2Cl2 hydrolysis occurs under subcritical temperatures, while relatively little hydrolysis occurs under supercritical conditions. These trends cannot be explain by simple Arrhenius behavior. A combination of Kirkwood theory and ab initio modeling provides a means of successfully accounting for this behavior both qualitatively and quantitatively. The results show that increases in the activation energy and a changing reaction profile with a decreasing dielectric constant provide a mechanism for a slowing of the reaction at higher temperatures by as much as three orders of magnitude. These solvent effects are captured quantitatively in a correction factor to the Arrenius form of the rate constant, which is incorporated into a global rate expression proposed for CH2Cl2 hydrolysis that provides good predictions of the experimental data.
Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (S
We present ab-initio calculations of the excited state properties of liquid water in the framework of Many-Body Greens function formalism. Snapshots taken from molecular dynamics simulations are used as input geometries to calculate electronic and op
An {em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interact
Nuclear quantum effects, such as zero-point energy and tunneling, cause significant changes to the structure and dynamics of hydrogen bonded systems such as liquid water. However, due to the current inability to simulate liquid water using an exact d
We show, by means of ab-initio calculations, that electron-electron correlations play an important role in potassium-doped picene ($K_x$-picene), recently characterized as a superconductor with $T_c = 18K$. The inclusion of exchange interactions by m