ﻻ يوجد ملخص باللغة العربية
An {em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review {em ab initio} calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the {em ab initio} no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the $A$-nucleon system are coupled to $(A-a)+a$ target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
In any finite system, the presence of a non-zero permanent electric dipole moment (EDM) would indicate CP violation beyond the small violation predicted in the Standard Model. Here, we use the ab initio no-core shell model (NCSM) framework to theoret
We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme reduces the required memory by approx
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio app
A quantitative and predictive microscopic theoretical framework that can describe reactions induced by $alpha$ particles ($^4$He nuclei) and heavier projectiles is currently lacking. Such a framework would contribute to reducing uncertainty in the mo
We report ab initio benchmark calculations of nuclear matrix elements (NMEs) for neutrinoless double-beta ($0 ubetabeta$) decays in light nuclei with mass number ranging from $A=6$ to $A=22$. We use the transition operator derived from light-Majorana