ﻻ يوجد ملخص باللغة العربية
Ground state properties of multi-orbital Hubbard models are investigated by the auxiliary field quantum Monte Carlo method. A Monte Carlo technique generalized to the multi-orbital systems is introduced and examined in detail. The algorithm contains non-trivial cases where the negative sign problem does not exist. We investigate one-dimensional systems with doubly degenerate orbitals by this new technique. Properties of the Mott insulating state are quantitatively clarified as the strongly correlated insulator, where the charge gap amplitude is much larger than the spin gap. The insulator-metal transitions driven by the chemical potential shows a universality class with the correlation length exponent $ u=1/2$, which is consistent with the scaling arguments. Increasing level split between two orbitals drives crossover from the Mott insulator with high spin state to the band insulator with low spin state, where the spin gap amplitude increases and becomes closer to the charge gap. Experimental relevance of our results especially to Haldane materials is discussed.
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a $d$-sh
We study three proposals for broken symmetry in the cuprate pseudogap - oxygen antiferromagnetism, $Theta_{II}$ orbital loop currents, and circulating currents involving apex oxygens - through numerical exploration of multi-orbital Hubbard models. Ou
The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{text{c}}$=0.6K), the Kondo ($T_{text{K}}$$app
Motivated by the absence of both spin freezing and a cooperative Jahn-Teller effect at the lowest measured temperatures, we study the ground state of Ba3CuSb2O9. We solve a general spin-orbital model on both the honeycomb and the decorated honeycomb
Using a straightforward extension of the analysis of Lieb and Wu, we derive a simple analytic form for the ground state energy of a one-dimensional Hubbard ring in the atomic limit. This result is valid for an textit{arbitrary} number of lattice site