ﻻ يوجد ملخص باللغة العربية
We study three proposals for broken symmetry in the cuprate pseudogap - oxygen antiferromagnetism, $Theta_{II}$ orbital loop currents, and circulating currents involving apex oxygens - through numerical exploration of multi-orbital Hubbard models. Our numerically exact results show no evidence for the existence of oxygen antiferromagnetic order or the $Theta_{II}$ phase in the three-orbital Hubbard model. The model also fails to sustain an ordered current pattern even with the presence of additional apex oxygen orbitals. We thereby conclude that it is difficult to stabilize the aforementioned phases in the multi-orbital Hubbard models for parameters relevant to cuprate superconductors. However, the $Theta_{II}$ phase might be stabilized through explicit flux terms. We find an enhanced propensity for circulating currents with such terms in calculations simulating applied stress or strain, which skew the copper-oxygen plane to resemble a kagome lattice. We propose an experimental viewpoint to shed additional light on this problem.
A growing list of experiments show orthorhombic electronic anisotropy in the iron pnictides, in some cases at temperatures well above the spin density wave transition. These experiments include neutron scattering, resistivity and magnetoresistance me
Charge density wave (CDW) order has been shown to compete and coexist with superconductivity in underdoped cuprates. Theoretical proposals for the CDW order include an unconventional $d$-symmetry form factor CDW, evidence for which has emerged from m
By introducing the possibility of equal- and opposite-spin pairings concurrently, we show that the extended attractive Hubbard model (EAHM) exhibits rich ground state phase diagrams with a variety of singlet, triplet, and mixed parity superconducting
Nematic order resulting from the partial melting of density-waves has been proposed as the mechanism to explain nematicity in iron-based superconductors. An outstanding question, however, is whether the microscopic electronic model for these systems
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground-state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study th