ترغب بنشر مسار تعليمي؟ اضغط هنا

The Puzzling Collapse of Electronic Sliding Friction on a Superconductor Surface

103   0   0.0 ( 0 )
 نشر من قبل Erio Tosatti
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent paper [Phys. Rev. Lett. 80 (1998) 1690], Krim and coworkers have observed that the friction force, acting on a thin physisorbed layer of N_2 sliding on a lead film, abruptly decreases by a factor of ~2 when the lead film is cooled below its superconductivity transition temperature. We discuss the possible mechanisms for the abruptness of the sliding friction drop, and also discuss the relevance of these results to the problem of electronic friction.

قيم البحث

اقرأ أيضاً

Markov State Modeling has recently emerged as a key technique for analyzing rare events in thermal equilibrium molecular simulations and finding metastable states. Here we export this technique to the study of friction, where strongly non-equilibrium events are induced by an external force. The approach is benchmarked on the well-studied Frenkel-Kontorova model, where we demonstrate the unprejudiced identification of the minimal basis microscopic states necessary for describing sliding, stick-slip and dissipation. The steps necessary for the application to realistic frictional systems are highlighted.
The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simu lations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.
We consider an oscillator model to describe qualitatively friction force for an atomic force mi-croscope (AFM) tip driven on a surface described by periodic potential. It is shown that average value of the friction force could be controlled by applic ation of external time-dependent periodic perturbation. Numerical simulation demonstrates significant drop or increase of friction depending on amplitude and frequency of perturbation. Two different oscillating regimes are observed, they determined by frequency and amplitude of perturbation. The first one is regime of mode locking at frequencies multiple to driving frequency. It occurs close to resonance of harmonic perturbation and driving frequencies. Another regime of motion for a driven oscillator is characterized by aperiodic oscillations. It was observed in the numerical experiment for perturbations with large amplitudes and frequencies far from oscillator eigenfrequency. In this regime the oscillator does not follow external driving force, but rather oscillates at several modes which result from interaction of oscillator eigenmode and perturbation frequency.
The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essent ially inaccurate. NTs tend to flatten at the interface with the substrate and upon driving they can either roll or slide depending on their size and on their relative orientation with the substrate. In the epitaxially aligned orientation we find that rolling is always the main mechanism of motion, producing a kinetic friction linearly growing with the number of walls, in turn causing an unprecedented supra-linear scaling with the contact area. A 30 degrees misalignment raises superlubric effects, making sliding favorable against rolling. The resulting rolling-to-sliding transition in misaligned NTs is explained in terms of the faceting appearing in large multi-wall tubes, which is responsible for the increased rotational stiffness. Modifying the geometrical conditions provides an additional means of drastically tailoring the frictional properties in this unique tribological system.
We report on memory effects involved in the transient frictional response of a contact interface between a silicone rubber and a spherical glass probe when it is perturbed by changes in the orientation of the driving motion or by velocity steps. From measurements of the displacement fields at the interface, we show that observed memory effects can be accounted for by the non-uniform distribution of the sliding velocity within the contact interface. As a consequence of these memory effects, the friction force may no longer be aligned with respect to the sliding trajectory. In addition, stick-slip motions with a purely geometrical origin are also evidenced. These observations are adequately accounted for by a friction model which takes into account heterogeneous displacements within the contact area. When a velocity dependence of the frictional stress is incorporated in this the model, transient regimes induced by velocity steps are also adequately described. The good agreement between the model and experiments outlines the role of space heterogeneities in memory effects involved in soft matter friction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا