ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of Defects on Friction for a Xe Film Sliding on Ag(111)

78   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of a step defect and a random array of point defects (such as vacancies or substitutional impurities) on the force of friction acting on a xenon monolayer film as it slides on a silver (111) substrate are studied by molecular dynamic simulations and compared with the results of lowest order perturbation theory in the substrate corrugation potential. For the case of a step, the magnitude and velocity dependence of the friction force are strongly dependent on the direction of sliding respect to the step and the corrugation strength. When the applied force F is perpendicular to the step, the film is pinned forF less than a critical force Fc. Motion of the film along the step, however, is not pinned. Fluctuations in the sliding velocity in time provide evidence of both stick-slip motion and thermally activated creep. Simulations done with a substrate containing a 5 percent concentration of random point defects for various directions of the applied force show that the film is pinned for the force below a critical value. The critical force, however, is still much lower than the effective inertial force exerted on the film by the oscillations of the substrate in experiments done with a quartz crystal microbalance (QCM). Lowest order perturbation theory in the substrate potential is shown to give results consistent with the simulations, and it is used to give a physical picture of what could be expected for real surfaces which contain many defects.



قيم البحث

اقرأ أيضاً

Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on-the-fly from Density Functional Theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H$_2$ on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode-specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111) surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.
73 - Haoyu Dong , Le Lei , Shuya Xing 2021
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic elect ronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.
Molecular Dynamics simulations are reported for the structural and thermodynamic properties of submonolayer xenon adsorbed on the $(111)$ surface of platinum for temperatures up to the (apparently incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated with a standard two-dimensional molecular dynamics simulation, the model takes into consideration the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to describe the apparent smoothing of the corrugation with increasing temperature. We examine the importance of this thermal smoothing to the relative stability of several observed and proposed low-temperature structures. Structure factor calculations are compared to experimental results in an attempt to determine the low temperature structure of this system. These calculations provide strong evidence that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt$(111)$ substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard wisdom regarding this system, namely that the very low temperature phase of this system is a striped incommensurate phase. We present the case for further experimental investigation of this and similar systems as possible examples of chaotic low temperature phases in two dimensions.
A sudden drop in mechanical friction, between an adsorbed nitrogen monolayer and a lead substrate, occurs when the lead passes through the superconducting transition temperature. We attribute this effect to a sudden drop at the superconducting transi tion temperature of the substrate Ohmic heating. The Ohmic heating is due to the electronic screening current that results from the sliding adsorbed film.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا