ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure Determination of Disordered Metallic Sub-Monolayers by Helium Scattering: A Theoretical and Experimental Study

51   0   0.0 ( 0 )
 نشر من قبل Dr. Daniel A. Lidar
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.T. Yinnon




اسأل ChatGPT حول البحث

An approach based on He scattering is used to develop an atomic-level structural model for an epitaxially grown disordered sub-monolayer of Ag on Pt(111) at 38K. Quantum scattering calculations are used to fit structural models to the measured angular intensity distribution of He atoms scattered from this system. The structure obtained corresponds to narrowly size-dispersed compact clusters with modest translational disorder, and not to fractals which might be expected due to the low surface temperature. The clusters have up to two layers in height, the lower one having few defects only. The relations between specific features of the angular scattering distribution, and properties such as the cluster sizes and shapes, the inter-cluster distance distribution etc., are discussed. The results demonstrate the usefulness of He scattering as a tool for unraveling new complex surface phases.



قيم البحث

اقرأ أيضاً

An experimental investigation of sub-wavelength imaging by a wire medium slab is performed. A complex-shaped near field source is used in order to test imaging performance of the device. It is demonstrated that the ultimate bandwidth of operation of the constructed imaging device is 4.5% that coincides with theoretical predictions [Phys. Rev. E 73, 056607 (2006)]. Within this band the wire medium slab is capable of transmitting images with lambda/15 resolution irrespectively of the shape and complexity of the source. Actual bandwidth of operation for particular near-field sources can be larger than the ultimate value but it strongly depends on the configuration of the source.
Because substitutions of BH4- anion with Br can stabilize the hexagonal structure of the LiBH4 at room temperature, leading to a high Li-ion conductivity, its thermodynamic stability has been investigated in this work. The binary LiBH4-LiBr system ha s been explored by means of X-ray diffraction and differential scanning calorimetry, combined with an assessment of thermodynamic properties. The monophasic zone of the hexagonal Li(BH4)1-x(Br)x solid solution has been defined from x=0.30 to x=0.55 at room temperature. Solubility limits have been determined by in-situ X-ray diffraction at various temperatures. For the formation of the h-Li(BH4)0.6(Br)0.4 solid solution, a value of the enthalpy of mixing has been determined experimentally equal to 1.0 kJ/mol. In addition, the enthalpy of melting has been measured for various compositions. Lattice stabilities of LiBH4 and LiBr have been determined by ab initio calculations, using CRYSTAL and VASP codes. Combining results of experiments and theoretical calculations, the LiBH4-LiBr phase diagram has been determined in all composition and temperature range by the CALPHAD method.
We predict the existence of a new ferromagnetic shape memory alloy Ga_2MnNi using density functional theory. The martensitic start temperature (T_M) is found to be approximately proportional to the stabilization energy of the martensitic phase (delta E_tot) for different shape memory alloys. Experimental studies performed to verify the theoretical results show that Ga_2MnNi is ferromagnetic at room temperature and the T_M and T_C are 780K and 330K, respectively. Both from theory and experiment, the martensitic transition is found to be volume conserving that is indicative of shape memory behavior.
251 - R. Shaltaf , X. Gonze , M. Cardona 2008
We extend recent textit{ab initio} calculations of the electronic band structure and the phonon dispersion relations of rhombohedral GeTe to calculations of the density of phonon states and the temperature dependent specific heat. The results are com pared with measurements of the specific heat. It is discovered that the specific heat depends on hole concentration, not only in the very low temperature region (Sommerfeld term) but also at the maximum of $C_p/T^3$ (around 16 K). To explain this phenomenon, we have performed textit{ab initio} lattice dynamical calculations for GeTe rendered metallic through the presence of a heavy hole concentration ($p$ $sim$ 2$times$ 10$^{21}$ cm$^{-3}$). They account for the increase observed in the maximum of $C_p/T^3$.
108 - A. Siber , B. Gumhalter , J. Braun 2000
The surface phonon dispersion curves of commensurate Xe monolayers on Cu(111) and incommensurate Xe monolayers on Cu(001) surfaces have been measured using He atom scattering (HAS) time of flight (TOF) spectroscopy. The TOF spectra are interpreted by combining quantum scattering calculations with the dynamical matrix description of the surface vibrations. Both a vertically polarized Einstein-like mode and another, acoustic-like mode of dominantly longitudinal character, are identified. The latter mode is characterized by the presence and absence of the zone center frequency gap in the commensurate and incommensurate adlayers, respectively. The microscopic description of the TOF spectral intensities is based on the extensive theoretical studies of the interplay of the phonon dynamics, projectile-surface potentials, multi-quantum interference and projectile recoil, and their effect on the HAS spectra. Both single and multi-quantum spectral features observed over a wide range of He atom incident energies and substrate temperatures are successfully explained by the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا