ﻻ يوجد ملخص باللغة العربية
An experimental investigation of sub-wavelength imaging by a wire medium slab is performed. A complex-shaped near field source is used in order to test imaging performance of the device. It is demonstrated that the ultimate bandwidth of operation of the constructed imaging device is 4.5% that coincides with theoretical predictions [Phys. Rev. E 73, 056607 (2006)]. Within this band the wire medium slab is capable of transmitting images with lambda/15 resolution irrespectively of the shape and complexity of the source. Actual bandwidth of operation for particular near-field sources can be larger than the ultimate value but it strongly depends on the configuration of the source.
Evanescent wave amplification is observed, for the first time to our knowledge, inside a half-wavelength-thick wire medium slab used for subwavelength imaging. The wire medium is analyzed using both a spatially dispersive finite-difference time-domai
We study the guided modes in the wire medium slab taking into account both the nonlocality and losses in the structure. We show that due to the fact that the wire medium is an extremeley spatially dispersive metamaterial, the effect of nonlocality pl
An approach based on He scattering is used to develop an atomic-level structural model for an epitaxially grown disordered sub-monolayer of Ag on Pt(111) at 38K. Quantum scattering calculations are used to fit structural models to the measured angula
We demonstrate that an array of metallic nanorods enables sub-wavelength (near-field) imaging at infrared frequencies. Using an homogenization approach, it is theoretically proved that under certain conditions the incoming radiation can be transmitte
Wire-feed laser additive manufacturing is an emerging fabrication technique capable of highly automated large-scale volume production that can reduce both material waste and overall cost while improving product lead times. Quality assurance is necess