ﻻ يوجد ملخص باللغة العربية
Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam lithography followed by an etching procedure which combined dry and wet etching techniques. The quantum disc structures and the parent structure were studied by photoluminescence and photoluminescence excitation spectroscopy. For the light-hole excitons in the quantum well region, shifts of the energy positions are observed following fabrication of the discs, confirming that strain relaxation occurs in the pillars. The light-hole exciton lines also sharpen following disc fabrication: this is due to an interplay between strain effects (related to dislocations) and the lateral size of the discs. A further consequence of the small lateral sizes of the discs is that the intensity of the donor-bound exciton emission from the disc is found to decrease with the disc radius. These size-related effects occur before the disc radius is reduced to dimensions necessary for lateral quantum confinement to occur but will remain important when the discs are made small enough to be considered as quantum dots.
We show that two major carrier excitation mechanisms are present in II-VI self-assembled quantum dots. The first one is related to direct excited state - ground state transition. It manifests itself by the presence of sharp and intense lines in the e
By coupling silicon nanowires (~150 nm diameter, 20 micron length) with an {Omega}-shaped plasmonic nanocavity we are able to generate broadband visible luminescence, which is induced by high-order hybrid nanocavity-surface plasmon modes. The nature
Resonant Raman spectra (RRS) of O-H and O-D vibration and libration modes, their combinations and higher harmonics have been observed in LiTaO3 polycrystalline thin films. RRS peaks are superimposed on photoluminescence (PL) spectrum. Monochromatic l
Circularly-polarized magneto-photoluminescence (magneto-PL) technique has been applied to investigate Zeeman effect in InAs/InGaAs/InAlAs quantum wells (QWs) in Faraday geometry. Structures with different thickness of the QW barriers have been studie
ultiwalled carbon nanotubes, prepared by both electric arc discharge and chemical vapor deposition methods, show a strong visible light emission in photoluminescence experiments. All the samples employed in the experiments exhibit nearly same super-l