ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Density of States Fluctuations in the Normal State Properties of High Tc Superconductors

68   0   0.0 ( 0 )
 نشر من قبل Enrico Milani
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.A.Varlamov




اسأل ChatGPT حول البحث

HTS show many puzzling anomalies in their normal state properties. Among them are: - the presence of a peak in the c-axis resistance and its growth in external magnetic field - the anomalous negative magnetoresistance observed above Tc - the deviation from the Korringa law in the temperature dependence of the NMR relaxation rate - the opening of a large pseudo-gap in the c-axis optical conductivity well above Tc - the gap-like tunneling anomalies observed above Tc - the anomalies in the thermoelectric power above Tc We show how all these effects can be explained by the enhanced role played in quasi-2D systems by the fluctuation decrease of the one-electron density of states (DOS) at the Fermi level, and its competition with other fluctuation contributions (AL, MT). The full fluctuation theory in HTS is reviewed and its resuls compared with experimental data.

قيم البحث

اقرأ أيضاً

We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d oped cuprates extending to temperatures far above the critical temperature (Tc). The primary features of our data are incompatible with the spatially inhomogeneous response being dominated by known charge density wave (CDW) and spin density wave (SDW) orders. Instead the normal-state inhomogeneous line broadening is found to scale with the maximum value Tc^max for each cuprate family, indicating it is controlled by the same energy scale as Tc. Since the degree of chemical disorder varies widely among the cuprates we have measured, the observed scaling constitutes evidence for an intrinsic electronic tendency toward inhomogeneity above Tc.
We present $beta$-FeSe magnetotransport data, and describe them theoretically. Using a simplified microscopic model with two correlated effective orbitals, we determined the normal state electrical conductivity and Hall coefficient, using Kubo formal ism. With model parameters relevant for Fe-chalcogenides, we describe the observed effect of the structural transition on the ab-plane electrical resistivity, as well as on the magnetoresistance. Temperature-dependent Hall coefficient data were measured at 16 Tesla, and their theoretical description improves upon inclusion of moderate electron correlations. We confirm the effect of the structural transition on the electronic structure, finding deformation-induced band splittings comparable to those reported in angle-resolved photoemission.
94 - I. L. Landau , H. R. Ott 2004
We apply a recently developed scaling procedure to the analysis of equilibrium magnetization M(H) data that were obtained for T-2212 and Bi-2212single crystals and were reported in the literature. The temperature dependencies of the upper critical fi eld and the magnetic field penetration depth resulting from our analysis are distinctly different from those obtained in the original publications. We argue that theoretical models, which are usually employed for analyses of the equilibrium magnetization in the mixed state of type-II superconductors are not adequate for a quantitative description of high-Tc superconductors. In addition, we demonstrate that the scaled equilibrium magnetization M(H) curve for a Tl-2212 sample reveals a pronounced kink, suggesting a phase transition in the mixed state.
We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuati ons, if transferred hyperfine coupling is a dominant interaction between 75As nuclei and Fe electronic spins, whereas for an on-site hyperfine coupling scenario, these are weaker, but still present to account for our experimental observations. Density-functional calculations of electric field gradient correctly reproduce the experimental values for both 75As and 7Li sites.
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-Tc superconducting cuprates, stripes are widely suspected to exist in a fluctuating form. Here, we us e numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the Cu-O plane. Our results, which are robust to varying parameters, cluster size, and boundary condition, strongly support the interpretation of a variety of experimental observations in terms of the physics of fluctuating stripes, including the hourglass magnetic dispersion and the Yamada plot of incommensurability vs. doping. These findings provide a novel perspective on the intertwined orders emerging from the cuprates normal state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا