ترغب بنشر مسار تعليمي؟ اضغط هنا

On the interpretation of the equilibrium magnetization in the mixed state of high-Tc superconductors

95   0   0.0 ( 0 )
 نشر من قبل I. L. Landau
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply a recently developed scaling procedure to the analysis of equilibrium magnetization M(H) data that were obtained for T-2212 and Bi-2212single crystals and were reported in the literature. The temperature dependencies of the upper critical field and the magnetic field penetration depth resulting from our analysis are distinctly different from those obtained in the original publications. We argue that theoretical models, which are usually employed for analyses of the equilibrium magnetization in the mixed state of type-II superconductors are not adequate for a quantitative description of high-Tc superconductors. In addition, we demonstrate that the scaled equilibrium magnetization M(H) curve for a Tl-2212 sample reveals a pronounced kink, suggesting a phase transition in the mixed state.

قيم البحث

اقرأ أيضاً

115 - I. L. Landau , H. R. Ott 2004
We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.
81 - I. L. Landau , H. R. Ott 2004
We discuss the analysis of mixed-state magnetization data of type-II superconductors using a recently developed scaling procedure. It is based on the fact that, if the Ginzburg-Landau parameter kappa does not depend on temperature, the magnetic susce ptibility is a universal function of H/H_c2(T), leading to a simple relation between magnetizations at different temperatures. Although this scaling procedure does not provide absolute values of the upper critical fieldH_c2(T), its temperature variation can be established rather accurately. This provides an opportunity to validate theoretical models that are usually employed for the evaluation of H_c2(T) from equilibrium magnetization data. In the second part of the paper we apply this scaling procedure for a discussion of the notorious first order phase transition in the mixed state of high temperature superconductors. Our analysis, based on experimental magnetization data available in the literature, shows that the shift of the magnetization accross the transition may adopt either sign, depending on the particular chosen sample. We argue that this observation is inconsistent with the interpretation that this transition always represents the melting transition of the vortex lattice.
81 - I.L. Landau , H. Keller 2007
We argue that claims about magnetic field dependence of the magnetic field penetration depth lambda, which were made on the basis of moun-spin-rotation studies of some superconductors, originate from insufficient accuracy of theoretical models employ ed for the data analysis. We also reanalyze some of already published experimental data and demonstrate that numerical calculations of Brandt [E.H. Brandt, Phys. Rev. B 68, 54506 (2003)] may serve as a reliable and powerful tool for the analysis of the data collected in experiments with conventional superconductors. Furthermore, one can use this approach in order to distinguish between conventional and unconventional superconductors. It is unfortunate that these calculations have practically never been employed for such analyses.
67 - A.A.Varlamov 1997
HTS show many puzzling anomalies in their normal state properties. Among them are: - the presence of a peak in the c-axis resistance and its growth in external magnetic field - the anomalous negative magnetoresistance observed above Tc - the de viation from the Korringa law in the temperature dependence of the NMR relaxation rate - the opening of a large pseudo-gap in the c-axis optical conductivity well above Tc - the gap-like tunneling anomalies observed above Tc - the anomalies in the thermoelectric power above Tc We show how all these effects can be explained by the enhanced role played in quasi-2D systems by the fluctuation decrease of the one-electron density of states (DOS) at the Fermi level, and its competition with other fluctuation contributions (AL, MT). The full fluctuation theory in HTS is reviewed and its resuls compared with experimental data.
We report the results of a muon spin rotation (muSR) study of the bulk of Bi{2+x}Sr{2-x}CaCu2O{8+delta}, as well as pure and Ca-doped YBa2Cu3Oy, which together with prior measurements reveal a universal inhomogeneous magnetic-field response of hole-d oped cuprates extending to temperatures far above the critical temperature (Tc). The primary features of our data are incompatible with the spatially inhomogeneous response being dominated by known charge density wave (CDW) and spin density wave (SDW) orders. Instead the normal-state inhomogeneous line broadening is found to scale with the maximum value Tc^max for each cuprate family, indicating it is controlled by the same energy scale as Tc. Since the degree of chemical disorder varies widely among the cuprates we have measured, the observed scaling constitutes evidence for an intrinsic electronic tendency toward inhomogeneity above Tc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا