ﻻ يوجد ملخص باللغة العربية
We perform high quality, first principles calculations of the properties of Pb and Tl isolated monolayers. Among these, we consider the equilibrium lattice constant, the two dimensional compressibilities and the electronic density. Comparison is made with previous results obtained using more simplified models. The present results represent an improvement concerning the calculated compressibilities; these remaining still lower than the measured values. We speculate that the latter could be due to some corrugation of the monolayer, not considered in the present modeling.
First-principles calculations within density functional theory (DFT) have been carried out to investigate the adsorption of various gas molecules including CO, CO2, NH3, NO and NO2 on MoS2 monolayer in order to fully exploit the gas sensing capabilit
The engineered spin structures recently built and measured in scanning tunneling microscope experiments are calculated using density functional theory. By determining the precise local structure around the surface impurities, we find the Mn atoms can
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi
Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental explorations published. While experiments work on complicated materials, theoretical studies are still hovering around the phenomenon-bas
A two dimensional (2D) Group-VI Te monolayer, tellurene, is predicted by using the first-principles calculations, which consists of planner four-membered and chair-like six-membered rings arranged alternately in a 2D lattice. The phonon spectra calcu