ﻻ يوجد ملخص باللغة العربية
We derive exact expressions for the excess number of clusters b and the excess cumulants b_n of a related quantity at the 2-D percolation point. High-accuracy computer simulations are in accord with our predictions. b is a finite-size correction to the Temperley-Lieb or Baxter-Temperley-Ashley formula for the number of clusters per site n_c in the infinite system limit; the bn correct bulk cumulants. b and b_n are universal, and thus depend only on the systems shape. Higher-order corrections show no apparent dependence on fractional powers of the system size.
Continuing the program begun by the authors in a previous paper, we develop an exact low-density expansion for the random minimum spanning tree (MST) on a finite graph, and use it to develop a continuum perturbation expansion for the MST on critical
The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering for H>0. A low-temperature (T<11K), low-field (H<1T) pseudophase transition boundary separates a partially antiferromagnetically ordered phase from the
We consider the negative weight percolation (NWP) problem on hypercubic lattice graphs with fully periodic boundary conditions in all relevant dimensions from d=2 to the upper critical dimension d=6. The problem exhibits edge weights drawn from disor
We construct and solve a classical percolation model with a phase transition that we argue acts as a proxy for the quantum many-body localisation transition. The classical model is defined on a graph in the Fock space of a disordered, interacting qua
We present some exact results on bond percolation. We derive a relation that specifies the consequences for bond percolation quantities of replacing each bond of a lattice $Lambda$ by $ell$ bonds connecting the same adjacent vertices, thereby yieldin