ترغب بنشر مسار تعليمي؟ اضغط هنا

Director configuration of planar solitons in nematic liquid crystals

142   0   0.0 ( 0 )
 نشر من قبل Joachim Stelzer
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations which are tested against a numerical shooting method. The results are particularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The director field is continuous everywhere apart from a straight line segment whose length depends on the value of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics due to an external magnetic field.



قيم البحث

اقرأ أيضاً

We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so me known interesting solutions, i. e., uniform heliconical structures, which correspond to the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uniform nematic one. Moreover, we find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion Tubes. Skyrmion Tubes are characterized by a localized cylindrically-symmetric pattern surrounded by either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatic ally enhance the field coupling leading to the stabilization of the vortex beam when the amplitude of the second beam exceeds some threshold value. We develop a variational approach to describe this effect analytically.
This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofi lament variations on smectic phases. The analysis uses the concept of four fundamental modes of director deformation: twist, bend, splay, and a fourth mode related to saddle-splay. Each mode is coupled to a specific type of molecular order: chirality, polarization perpendicular and parallel to the director, and octupolar order. When the liquid crystal develops one type of spontaneous order, the ideal local structure becomes nonuniform, with the corresponding director deformation. In general, the ideal local structure is frustrated; it cannot fill space. As a result, the liquid crystal must form a complex global phase, which may have a combination of deformation modes, and may have a periodic array of defects. Thus, the concept of an ideal local structure under geometric frustration provides a unified framework to understand the wide variety of modulated phases.
In uniaxial soft matter with a reorientational nonlinearity, such as nematic liquid crystals, a light beam in the extraordinary polarization walks off its wavevector due to birefringence, while it undergoes self-focusing via an increase in refractive index and eventually forms a spatial soliton. Hereby the trajectory evolution of solitons in nematic liquid crystals- nematicons- in the presence of a linearly varying transverse orientation of the optic axis is analysed. In this study we use and compare two approaches: i) a slowly varying (adiabatic) approximation based on momentum conservation of the soliton in a Hamiltonian sense; ii) the Frank-Oseen elastic theory coupled with a fully vectorial and nonlinear beam propagation method. The models provide comparable results in such a non-homogeneously oriented uniaxial medium and predict curved soliton paths with either monotonic or non-monotonic curvatures. The minimal power needed to excite a solitary wave via reorientation remains essentially the same in both uniform and modulated cases.
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi s equilibrium transition is governed by the free energy of the nematic which describes the elasticity with respects to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit $omega to 0$ is highly singular. In distinct contrast to the dc-case, where the patterns are stationary and time-independent, they appear at finite, small $omega$ periodically in time as sudden bursts. Flexodomains are in competition with the intensively studied electro-hydrodynamic instability in nematics, which presents a non-equilibrium dissipative transition. It will be demonstrated that $omega$ is a very convenient control parameter to tune between flexodomains and convection patterns, which are clearly distinguished by the orientation of their stripes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا