ﻻ يوجد ملخص باللغة العربية
The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations which are tested against a numerical shooting method. The results are particularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The director field is continuous everywhere apart from a straight line segment whose length depends on the value of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics due to an external magnetic field.
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so
We analyze the existence and stability of two-component vector solitons in nematic liquid crystals for which one of the components carries angular momentum and describes a vortex beam. We demonstrate that the nonlocal, nonlinear response can dramatic
This article analyzes modulated phases in liquid crystals, from the long-established cholesteric and blue phases to the recently discovered twist-bend, splay-bend, and splay nematic phases, as well as the twist-grain-boundary (TGB) and helical nanofi
In uniaxial soft matter with a reorientational nonlinearity, such as nematic liquid crystals, a light beam in the extraordinary polarization walks off its wavevector due to birefringence, while it undergoes self-focusing via an increase in refractive
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. Thi