ﻻ يوجد ملخص باللغة العربية
We present a simple mechanical model for dynamic wetting phenomena. Metallic balls spread along a periodically corrugated surface simulating molecules of liquid advancing along a solid substrate. A vertical stack of balls mimics a liquid droplet. Stochastic motion of the balls, driven by mechanical vibration of the corrugated surface, induces diffusional motion. Simple theoretical estimates are introduced and agree with the results of the analog experiments, with numerical simulation, and with experimental data for microscopic spreading dynamics.
To evaluate the effectiveness of the containment on the epidemic spreading of the new Coronavirus disease 2019, we carry on an analysis of the time evolution of the infection in a selected number of different Countries, by considering well-known macr
Macroscopic growth laws, solutions of mean field equations, describe in an effective way an underlying complex dynamics. They are applied to study the spreading of infections, as in the case of CoviD-19, where the counting of the cumulated number $N(
We present a simple analysis of the force noise associated with the mechanical damping of the motion of a test body surrounded by a large volume of rarefied gas. The calculation is performed considering the momentum imparted by inelastic collisions a
We study the real time evolution of the correlation functions in a globally quenched interacting one dimensional lattice system by means of time adaptive density matrix renormalization group. We find a clear light-cone behavior quenching the repulsiv
The thermalization of a gas towards a Maxwellian velocity distribution with the background temperature is described by a kinetic relaxation model. The sum of the kinetic energy of the gas and the thermal energy of the background are conserved, and th