ﻻ يوجد ملخص باللغة العربية
We investigate the combined effects of electrostatic interactions and hydrodynamic interactions on the short-time rotational self-diffusion coefficient in charge-stabilized suspensions. We calculate this coefficient as a function of volume fraction for various effective particle charges and amounts of added electrolyte. The influence of the hydrodynamic interactions on the rotational diffusion coefficient is less pronounced for charged particles than for uncharged ones. Salt-free suspensions are weakly influenced by hydrodynamic interactions. For these strongly correlated systems we obtain a quadratic volume fraction-dependence of the diffusion coefficient, which is well explained in terms of an effective hard sphere model.
We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in suspensions of charge-stabilized colloidal spheres. In simulation and theory, the spheres interact by a hard-core plus screened Coulomb pair potenti
Diffusion in bidisperse Brownian hard-sphere suspensions is studied by Stokesian Dynamics (SD) computer simulations and a semi-analytical theoretical scheme for colloidal short-time dynamics, based on Beenakker and Mazurs method [Physica 120A, 388 (1
The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particle
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute
For suspensions of permeable particles, the short-time translational and rotational self-diffusion coefficients, and collective diffusion and sedimentation coefficients are evaluated theoretically. An individual particle is modeled as a uniformly per