ﻻ يوجد ملخص باللغة العربية
We provide evidence that the gauge-fermion interaction in multiflavour quantum electrodynamics in $(2 + 1)$-dimensions is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial (quasi) fixed point (cross-over) that lies between the trivial fixed point (at infinite momenta) and the region where dynamical symmetry breaking and mass generation occurs. This quasi-fixed point structure implies slowly varying, rather than fixed, couplings in the intermediate regime of momenta, a situation which resembles that of (four-dimensional) `walking technicolour models of particle physics. Connection with the anomalous normal-state properties of certain condensed matter systems relevant for high-temperature superconductivity is briefly discussed. The relevance of the large (flavour) N expansion to the fermi-liquid problem is emphasized.
We argue that the gauge-fermion interaction in multiflavour quantum electrodynamics in $(2 + 1)$-dimensions is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-trivial (quasi) fixed point t
We study the doping evolution of the electronic structure in the normal phase of high-$T_c$ cuprates. Electronic structure and Fermi surface of cuprates with single CuO$_2$ layer in the unit cell like La$_{2-x}$Sr$_x$CuO$_4$ have been calculated by t
Cuprate high-T_c superconductors on the Mott-insulating side of optimal doping (with respect to the highest T_cs) exhibit enigmatic behavior in the non-superconducting state. Near optimal doping the transport and spectroscopic properties are unlike t
We show that the gauge-fermion interaction in multiflavour $(2+1)$-dimensional quantum electrodynamics with a finite infrared cut-off is responsible for non-fermi liquid behaviour in the infrared, in the sense of leading to the existence of a non-tri
We report resistivity and upper critical field B_c2(T) data for disordered (As deficient) LaO_0.9F_0.1FeAs_1-delta in a wide temperature and high field range up to 60 T. These samples exhibit a slightly enhanced superconducting transition at T_c = 28