ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Renormalization of the 3-D Ising model: Analyticity and Convergence

148   0   0.0 ( 0 )
 نشر من قبل H. W. J. Bloete
 تاريخ النشر 1996
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the assumptions on which the Monte Carlo renormalization technique is based, in particular the analyticity of the block spin transformations. On this basis, we select an optimized Kadanoff blocking rule in combination with the simulation of a d=3 Ising model with reduced corrections to scaling. This is achieved by including interactions with second and third neighbors. As a consequence of the improved analyticity properties, this Monte Carlo renormalization method yields a fast convergence and a high accuracy. The results for the critical exponents are y_H=2.481(1) and y_T=1.585(3).



قيم البحث

اقرأ أيضاً

Ising Monte Carlo simulations of the random-field Ising system Fe(0.80)Zn(0.20)F2 are presented for H=10T. The specific heat critical behavior is consistent with alpha approximately 0 and the staggered magnetization with beta approximately 0.25 +- 0.03.
Techniques for approximately contracting tensor networks are limited in how efficiently they can make use of parallel computing resources. In this work we demonstrate and characterize a Monte Carlo approach to the tensor network renormalization group method which can be used straightforwardly on modern computing architectures. We demonstrate the efficiency of the technique and show that Monte Carlo tensor network renormalization provides an attractive path to improving the accuracy of a wide class of challenging computations while also providing useful estimates of uncertainty and a statistical guarantee of unbiased results.
The key idea behind the renormalization group (RG) transformation is that properties of physical systems with very different microscopic makeups can be characterized by a few universal parameters. However, finding the optimal RG transformation remain s difficult due to the many possible choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in the restricted Boltzmann machine (RBM) and the weight factor distribution in the RG procedure, an optimal real-space RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo RG algorithm allows for direct computation of the RG flow and critical exponents. This scheme naturally generates a transformation that maximizes the real-space mutual information between the coarse-grained region and the environment. Our results establish a solid connection between the RG transformation in physics and the deep architecture in machine learning, paving the way to further interdisciplinary research.
By tempered Monte Carlo simulations, we study 2D site-diluted dipolar Ising systems. Dipoles are randomly placed on a fraction x of all L^2 sites in a square lattice, and point along a common crystalline axis. For x_c< x<=1, where x_c = 0.79(5), we f ind an antiferromagnetic phase below a temperature which vanishes as x approaches x_c from above. At lower values of x, we study (i) distributions of the spin--glass (SG) overlap q, (ii) their relative mean square deviation Delta_q^2 and kurtosis and (iii) xi_L/L, where xi_L is a SG correlation length. From their variation with temperature and system size, we find that the paramagnetic phase covers the entire T>0 range. Our results enable us to obtain an estimate of the critical exponent associated to the correlation length at T=0, 1/nu=0.35(10).
The existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated with seven neighbors, by using Monte Carlo simulations. In large systems we see the magnetization for different temperatures T to decay aft er a characteristic time tau, which is extrapolated to diverge at zero temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا