ﻻ يوجد ملخص باللغة العربية
The existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated with seven neighbors, by using Monte Carlo simulations. In large systems we see the magnetization for different temperatures T to decay after a characteristic time tau, which is extrapolated to diverge at zero temperature.
With up to 7 million spins, the existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated by Monte Carlo simulations. We confirm our earlier result that the magnetization for different temperatures T d
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time
Networks that have power-law connectivity, commonly referred to as the scale-free networks, are an important class of complex networks. A heterogeneous mean-field approximation has been previously proposed for the Ising model of the Barab{a}si-Albert
On directed and undirected Barabasi-Albert networks the Ising model with spin S=1/2 in the presence of a kind of noise is now studied through Monte Carlo simulations. The noise spectrum P(n) follows a power law, where P(n) is the probability of flipp
We investigate the behavior of the Ising model on two connected Barabasi-Albert scale-free networks. We extend previous analysis and show that a first order temperature-driven phase transition occurs in such system. The transition between antiparalel