ﻻ يوجد ملخص باللغة العربية
KCuCl$_3$ is a three dimensionally coupled spin dimer system, which undergoes a pressure-induced quantum phase transition from a gapped ground state to an antiferromagnetic state at a critical pressure of $P_{rm c} simeq 8.2$ kbar. Magnetic excitations in KCuCl$_3$ at a hydrostatic pressure of 4.7 kbar have been investigated by conducting neutron inelastic scattering experiments using a newly designed cylindrical high-pressure clamp cell. A well-defined single excitation mode is observed. The softening of the excitation mode due to the applied pressure is clearly observed. From the analysis of the dispersion relations, it is found that an intradimer interaction decreases under hydrostatic pressure, while most interdimer interactions increase.
KCuCl$_3$ is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap ${Delta}/k_{rm B}=31$ K. High-field magnetization measurements for KCuCl$_3$ have been performed in static magnetic fields of up to 30 T
The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.
Pressure-induced ordering close to a $z=1$ quantum critical point is studied in the presence of bond disorder in the quantum spin system (C$_4$H$_{12}$N$_2$)Cu$_2$(Cl$_{1-x}$Br$_{x}$)$_6$ (PHCX) by means of muon-spin rotation and relaxation. As for t
We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu$_2$Si$_2$. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order
We investigate the effect of strong electronic correlation on the massless Dirac fermion system, $alpha$-(BEDT-TTF)$_2$I$_3$, under pressure. In this organic salt, one can control the electronic correlation by changing pressure and access the quantum