ﻻ يوجد ملخص باللغة العربية
Pressure-induced ordering close to a $z=1$ quantum critical point is studied in the presence of bond disorder in the quantum spin system (C$_4$H$_{12}$N$_2$)Cu$_2$(Cl$_{1-x}$Br$_{x}$)$_6$ (PHCX) by means of muon-spin rotation and relaxation. As for the pure system (C$_4$H$_{12}$N$_2$)Cu$_2$Cl$_6$, pressure allows PHCX with small levels of disorder ($xleq 7.5%$) to be driven through a quantum critical point separating a low-pressure quantum paramagnetic phase from magnetic order at high pressures. However, the pressure-induced ordered state is highly inhomogeneous for disorder concentrations $x>1%$. This behavior might be related to the formation of a quantum Griffiths phase above a critical disorder concentration $7.5%<x_{rm c}<15%$. Br-substitution increases the critical pressure and suppresses critical temperatures and ordered moment sizes.
The conductivity and magnetization of Fe1-xCoxS2 were measured to investigate quantum critical behavior in disordered itinerant magnets. Small x (<0.001) is required to convert insulating iron pyrite into a metal, followed by a paramagnetic-to-ferrom
Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in anomalous Hall effect (AHE). However, since large Hall response originating from Berry curvature has been reported in quite limite
The magnetic properties of alkali-metal peroxychromate K$_2$NaCrO$_8$ are governed by the $S = 1/2$ pentavalent chromium cation, Cr$^{5+}$. Specific heat, magnetocalorimetry, ac magnetic susceptibility, torque magnetometry, and inelastic neutron scat
The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this