ﻻ يوجد ملخص باللغة العربية
We consider resonant transport through a molecular quantum dot coupled to a local vibration mode. Applying the non-equilibrium Green function technique in the polaron representation, we develop a non-perturbative scheme to calculate the electron spectral function of the molecule in the regime of intermediate electron-phonon coupling. With increasing tunneling coupling to the leads, correlations between polaron clouds become more important at relatively high temperature leading to a strong sharpening of the peak structure in the spectral function. The detection of such features in the current-voltage characteristics is briefly discussed.
Spin and charge transport through a quantum dot coupled to external nonmagnetic leads is analyzed theoretically in terms of the non-equilibrium Green function formalism based on the equation of motion method. The dot is assumed to be subject to spin
Contents: (1) Model of a lateral quantum dot system (2) Thermally-activated conduction: onset of the Coulomb blockade oscillations and Coulomb blockade peaks at low temperature (3) Activationless transport through a blockaded quantum dot: inela
We consider a quantum dot, affected by a local vibrational mode and contacted to macroscopic leads, in the non-equilibrium steady-state regime. We apply a variational Lang-Firsov transformation and solve the equations of motion of the Green functions
We study transport through a Weyl semimetal quantum dot sandwiched between an $s$-wave superconductor and a normal lead. The conductance peaks at regular intervals and exhibits double periodicity with respect to two characteristic frequencies of the
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-po