ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical temperature modification of low dimensional superconductors by spin doping

100   0   0.0 ( 0 )
 نشر من قبل Pasi Jalkanen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ion implantation of Fe and Mn into Al thin films was used for effective modification of Al superconductive properties. Critical temperature of the transition to superconducting state was found to decrease gradually with implanted Fe concentration. it was found that suppression by Mn implantation much stronger compared to Fe. At low concentrations of implanted ions, suppression of the critical temperature can be described with reasonable accuracy by existing models, while at concentrations above 0.1 at.% a pronounced discrepancy between the models and experiments is observed.

قيم البحث

اقرأ أيضاً

We use the renormalization group method to study the normal state of quasi-one-dimensional superconductors nearby a spin-density-wave instability. On the basis of one-loop scattering amplitudes for the quasi-one-dimensional electron gas, the integrat ion of the renormalization group equations for the two-loop single particle Matsubara self-energy leads to a nonFermi-liquid temperature downturn of the momentum-resolved quasi-particle weight over most part of the Fermi surface. The amplitude of the downturn correlates with the entire instability line for superconductivity, defining an extended quantum critical region of the phase diagram as a function of nesting deviations of the Fermi surface. One also extracts the downward renormalization of interchain hopping amplitudes at arbitrary low temperature in the normal phase. By means of analytical continuation of the Matsubara self-energy, one-particle spectral functions are obtained with respect to both energy and temperature and their anomalous features analyzed in connection with the sequence of instability lines of the phase diagram. The quasi-particle scattering rate is found to develop an unusual temperature dependence, which is best described by the superimposition of a linear and quadratic $T$ dependences. The nonFermi-liquid linear-$T$ component correlates with the temperature scale $T_c$ of the superconducting instability over an extended range of nesting deviations, whereas its anisotropy along the Fermi surface is predicted to parallel the momentum profile of a d-wave pairing gap on the Fermi surface. We examine the implications of our results for low dimensional unconventional superconductors, in particular the Bechgaard salts series of quasi-1D organic conductors, but also the pnictide and cuprate superconductors where several common features are observed.
95 - T.E. Mason 1998
Neutron scattering can provide detailed information about the energy and momentum dependence of the magnetic dynamics of materials provided sufficiently large single crystals are available. This requirement has limited the number of rare earth high t emperature superconducting materials that have been studied in any detail. However, improvements in crystal growth in recent years has resulted in considerable progress in our understanding of the behaviour of the magnetism of the CuO planes in both the superconducting and normal state. This review will focus primarily on the spin fluctuations in La_{2-x}Sr_{x}CuO_{4} and YBa_{2}Cu_{3}O_{7-x} since these are the two systems for which the most detailed results are available. Although gaps in our understanding remain, there is now a consistent picture of on the spin fluctuation spectra in both systems as well as the changes induced by the superconducting transition. For both La_{2-x}Sr_{x}CuO_{4} and underdoped YBa_{2}Cu_{3}O_{7-x} the normal state response is characterised by incommensurate magnetic fluctuations. The low energy excitations are suppressed by the superconducting transition with a corresponding enhancement in the response at higher energies. For YBa_{2}Cu_{3}O_{7-x} the superconducting state is accompanied by the rapid development of a commensurate resonant response whose energy varies with T_{c}. In underdoped samples this resonance persists above T_{c}.
264 - G. T. Liu , J. L. Luo , T. Xiang 2004
A series of compounds M$_{0.1}$Sr$_{0.9}$Cu$_2$(BO$_3$)$_2$ with Sr substituted by M=Al, La, Na and Y were prepared by solid state reaction. XRD analysis showed that these doping compounds are isostructural to SrCu$_2$(BO$_3$)$_2$. The magnetic susce ptibility from 1.9K to 300K in an applied magnetic field of 1.0T and the specific heat from 1.9K to 25K in applied fields up to 14T were measured. The spin gap is deduced from the low temperature susceptibility as well as the specific heat. It is found that the spin gap is strongly suppressed by magnetic fields. No superconductivity is observed in all four samples.
108 - Pradeep Kumar 2015
Raman spectroscopy is a very powerful probe to study the nature of quasi-particle excitations in condensed matter physics. The work presented in this thesis is focused on two different families of novel materials, namely the iron-based superconductor s (FeBS), multiferroic oxides and double perovskite. Although the properties of these two systems are quite different, some comparison can still be drawn between them. For instance, in both of these systems magnetism plays a crucial role and intricate coupling between phononic, magnetic and orbital degrees of freedom is crucial to understand their underlying physics responsible for their various exotic physical properties. Understanding the microscopic origin of quasi-particle excitations, such as phonons, magnons, orbitons, plasmons etc., and coupling between them in these complex materials, has been an intense field of research because it is believed that these excitations hold the key for explaining their rich physics. The systems studied in the thesis include (A) FeBS - (i) FeSe0.82 (ii) Ce1-zYzFeAsO1-xFx (z = 0, 0.4; x = 0.1, 0.2) (iii) Ca4Al2O5.7Fe2As2 (iv) Ca(Fe1-xCox)2As2 (x = 0.03, 0.05). (B) Multiferroic oxides - (i) AlFeO3 (ii) TbMnO3 and double perovskite (iii) La2NiMnO6.
90 - P.D. Sacramento 2015
A time periodic driving on a topologically trivial system induces edge modes and topological properties. In this work we consider triplet and singlet superconductors subject to periodic variations of the chemical potential, spin-orbit coupling and ma gnetization, in both topologically trivial and nontrivial phases, and study their influence on the charge and spin currents that propagate along the edges of the two-dimensional system, for moderate to large driving frequencies. Currents associated with the edge modes are induced in the trivial phases and enhanced in the topological phases. In some cases there is a sign reversal of the currents as a consequence of the periodic driving. The edge states associated with the finite quasi-energy states at the edge of the Floquet zone are in general robust, while the stability of the zero quasi-energy states depends on the parameters. Also, the spin polarization of the Floquet spectrum quasi-energies is strong as for the unperturbed topological phases. It is found that in some cases the unperturbed edge states are immersed in a continuum of states due to the perturbation, particularly if the driving frequency is not large enough. However, their contribution to the edge currents and spin polarization is still significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا