ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Orbital Magnetism and Hall Effect of Massless Fermions in Two Dimension

53   0   0.0 ( 0 )
 نشر من قبل Hidetoshi Fukuyama
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف H. Fukuyama




اسأل ChatGPT حول البحث

Inter-band effects of magnetic field on orbital magnetic susceptibility and Hall effect in weak magnetic field have been studied theoretically at absolute zero for the model of massless Fermions in two dimension described by Weyl equation similar to graphenes, which are simplified version of newly found one in molecular solids, arfa-ET2I3 described by tilted Weyl equation. The dependences on the Fermi energy of both orbital susceptibility and Hall conductivity near the zero-gap region scale with elastic scattering time and then are very singular.

قيم البحث

اقرأ أيضاً

Strong Coulomb repulsion and spin-orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems where both of these fundamental interactions are comparably strong, such as 3d an d 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here, we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin-orbit entangled 3d-5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.
We study the electronic structures and topological properties of $(M+N)$-layer twisted graphene systems. We consider the generic situation that $N$-layer graphene is placed on top of the other $M$-layer graphene, and is twisted with respect to each o ther by an angle $theta$. In such twisted multilayer graphene (TMG) systems, we find that there exists two low-energy flat bands for each valley emerging from the interface between the $M$ layers and the $N$ layers. These two low-energy bands in the TMG system possess valley Chern numbers that are dependent on both the number of layers and the stacking chiralities. In particular, when the stacking chiralities of the $M$ layers and $N$ layers are opposite, the total Chern number of the two low-energy bands for each valley equals to $pm(M+N-2)$ (per spin). If the stacking chiralities of the $M$ layers and the $N$ layers are the same, then the total Chern number of the two low-energy bands for each valley is $pm(M-N)$ (per spin). The valley Chern numbers of the low-energy bands are associated with large, valley-contrasting orbital magnetizations, suggesting the possible existence of orbital ferromagnetism and anomalous Hall effect once the valley degeneracy is lifted either externally by a weak magnetic field or internally by Coulomb interaction through spontaneous symmetry breaking.
The Hall effect in SrRuO$_3$ thin-films near the thickness limit for ferromagnetism shows an extra peak in addition to the ordinary and anomalous Hall effects. This extra peak has been attributed to a topological Hall effect due to two-dimensional sk yrmions in the film around the coercive field; however, the sign of the anomalous Hall effect in SrRuO$_3$ can change as a function of saturation magnetization. Here we report Hall peaks in SrRuO$_3$ in which volumetric magnetometry measurements and magnetic force microscopy indicate that the peaks result from the superposition of two anomalous Hall channels with opposite sign. These channels likely form due to thickness variations in SrRuO$_3$, creating two spatially separated magnetic regions with different saturation magnetizations and coercive fields. The results are central to the development of strongly correlated materials for spintronics.
We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g oing from real to complex as the coupling constant is increased. This change of behavior is manifested in the antisymmetric response, which displays power law behavior at small wavevectors reminiscent of a critical state, and a change in this power law from real to complex that is accompanied by poles in the response function for finite size systems, suggesting a phase transition for strong enough interactions. The density-density response is also calculated, for which no critical behavior is found. We demonstrate that exciton correlations enhance the cusp in the irreducible polarizability at $2k_F$, leading to a strong increase in the amplitude of Friedel oscillations around a charged impurity.
We report on the experimental observation of an anomalous Hall effect (AHE) in highly oriented pyrolytic graphite samples. The overall data indicate that the AHE in graphite can be self-consistently understood within the frameworks of the magnetic-field-driven excitonic pairing models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا