ﻻ يوجد ملخص باللغة العربية
We study Ostwald ripening of two-dimensional adatom and advacancy islands on a crystal surface by means of kinetic Monte Carlo simulations. At large bond energies the islands are square-shaped, which qualitatively changes the coarsening kinetics. The Gibbs--Thomson chemical potential is violated: the coarsening proceeds through a sequence of `magic sizes corresponding to square or rectangular islands. The coarsening becomes attachment-limited, but Wagners asymptotic law is reached after a very long transient time. The unusual coarsening kinetics obtained in Monte Carlo simulations are well described by the Becker--Doring equations of nucleation kinetics. These equations can be applied to a wide range of coarsening problems.
The phenomenon of Ostwald Ripening is generally considered a limiting factor in the monodisperse production of nanoparticles. However, by analysing the free energy of a binary AB solution with precipitated A particles we show that there is a region i
Applicability of classical Lifshitz-Slyozov theory of Ostwald ripening is analyzed and found limited by relatively large cluster sizes due to restrictions imposed by theoretical assumptions. An assumption about the steady state ripening regime poses
In this work we perform an ab-initio study of an ideal two-dimensional sample of 4He atoms, a model for 4He films adsorbed on several kinds of substrates. Starting from a realistic hamiltonian we face the microscopic study of the excitation phonon-ro
The Ostwald ripening phenomenon for gas bubbles in a liquid consists mainly in gas transfer from smaller bubbles to larger bubbles. An experiment was carried out in which the Ostwald ripening for air bubbles, in a liquid fluid with some rheological p
The two-body (pair) contribution to the entropy of two-dimensional Yukawa systems is calculated and analyzed. It is demonstrated that in the vicinity of the fluid-solid (freezing) phase transition the pair entropy exhibits an abrupt jump in a narrow