ﻻ يوجد ملخص باللغة العربية
Semiconducting single-wall carbon nanotubes are classified into two types by means of orbital angular momentum of valley state, which is useful to study their low energy electronic properties in finite-length. The classification is given by an integer $d$, which is the greatest common divisor of two integers $n$ and $m$ specifying the chirality of nanotubes, by analyzing cutting lines. For the case that $d$ is equal to or greater than four, two lowest subbands from two valleys have different angular momenta with respect to the nanotube axis. Reflecting the decoupling of two valleys, discrete energy levels in finite-length nanotubes exhibit nearly fourfold degeneracy and its small lift by the spin-orbit interaction. For the case that $d$ is less than or equal to two, in which two lowest subbands from two valleys have the same angular momentum, discrete levels exhibit lift of fourfold degeneracy reflecting the coupling of two valleys. Especially, two valleys are strongly coupled when the chirality is close to the armchair chirality. An effective one-dimensional lattice model is derived by extracting states with relevant angular momentum, which reveals the valley coupling in the eigenstates. A bulk-edge correspondence, relationship between number of edge states and the winding number calculated in the corresponding bulk system, is analytically shown by using the argument principle, which enables us to estimate the number of edge states from the bulk property. The number of edge states depends not only on the chirality but also on the shape of boundary.
We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the ra
We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high sensitivity time-resolved photo-luminescence experiments. Measurements from cryogenic to room temperature allow us to identify t
We present a systematic study on low-frequency current fluctuations of nano-devices consisting of one single semiconducting nanotube, which exhibit significant 1/f-type noise. By examining devices with different switching mechanisms, carrier types (e
We present a simple technique which uses a self-aligned oxide etch to suspend individual single-wall carbon nanotubes between metallic electrodes. This enables one to compare the properties of a particular nanotube before and after suspension, as wel
We found a giant Seebeck effect in semiconducting single-wall carbon nanotube (SWCNT) films, which exhibited a performance comparable to that of commercial Bi2Te3 alloys. Carrier doping of semiconducting SWCNT films further improved the thermoelectri