ﻻ يوجد ملخص باللغة العربية
The expansion of the velocity distribution function for the homogeneous cooling state (HCS) in a Sonine polynomial series around a Maxwellian is shown to be divergent, though Borel resummable. A convergent expansion for the HCS has been devised and employed to obtain the HCS velocity distribution function and (using it) the linear transport coefficients for a three dimensional monodisperse granular gas of smooth inelastic spheres, for all physical values of the coefficient of normal restitution. The results are in very good agreement with findings of DSMC simulations.
The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution are obtained in a unified framework as functions of the number of tra
Conditions for the stability under linear perturbations around the homogeneous cooling state are studied for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) res
We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy
We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. H
We study a general model of granular Brownian ratchet consisting of an asymmetric object moving on a line and surrounded by a two-dimensional granular gas, which in turn is coupled to an external random driving force. We discuss the two resulting Bol