ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of granular jet: Is granular flow really a perfect fluid?

184   0   0.0 ( 0 )
 نشر من قبل Tomohiko Sano
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform three-dimensional simulations of a granular jet impact for both frictional and frictionless grains. Small shear stress observed in the experiment[X. Cheng et al., Phys. Rev. Lett. 99, 188001 (2007) ] is reproduced through our simulation. However, the fluid state after the impact is far from a perfect fluid, and thus, similarity between granular jets and quark gluon plasma is superficial, because the observed viscosity is finite and its value is consistent with the prediction of the kinetic theory.



قيم البحث

اقرأ أيضاً

The rheology of a three-dimensional granular jet during an impact is investigated numerically. The cone-like scattering pattern and the sheet-like pattern observed in an experiment [X. Cheng, et al. Phys. Rev. Lett. 99, 188001 (2007)] can be reproduc ed through our calculation. We discuss the constitutive equation for granular jet impact in terms of our simulation. From the analysis of an effective friction constant, which is the ratio between the shear stress and the pressure the assumption of the zero yield stress would be natural in our setup and the shear visocity is not small in contrast to the suggestion by the experiment.
The impacts of granular jets for both frictional and frictionless grains in two dimensions are numerically investigated. A dense flow with a dead zone emerges during the impact. From our two-dimensional simulation, we evaluate the equations of state and the con- stitutive equations of the flow. The asymptotic divergences of pressure and shear stress similar to the situation near the jamming transition appear for the frictionless case, while their exponents are smaller than those of the sheared granular systems, and are close to the extrapolation from the kinetic theoretical regime. In a similar manner to the jam- ming for frictional grains, the critical density decreases as the friction constant of grains increases. For bi-disperse systems, the effective friction constant defined as the ratio of shear stress to normal stress, monotonically increases from near zero, as the strain rate increases. On the other hand, the effective friction constant has two metastable branches for mono-disperse systems because of the coexistence of a crystallized state and a liquid state.
124 - W. Till Kranz 2013
I derive a mode-coupling theory for the velocity autocorrelation function, psi(t), in a fluid of randomly driven inelastic hard spheres far from equilibrium. With this, I confirm a conjecture from simulations that the velocity autocorrelation functio n decays algebraically, psi(t) ~ t^{-3/2}, if momentum is conserved. I show that the slow decay is due to the coupling to transverse currents.
We experimentally investigate the response to perturbations of circular symmetry for dense granular flow inside a three-dimensional right-conical hopper. These experiments consist of particle tracking velocimetry for the flow at the outer boundary of the hopper. We are able to test commonly used constitutive relations and observe granular flow phenomena that we can model numerically. Unperturbed conical hopper flow has been described as a radial velocity field with no azimuthal component. Guided by numerical models based upon continuum descriptions, we find experimental evidence for secondary, azimuthal circulation in response to perturbation of the symmetry with respect to gravity by tilting. For small perturbations we can discriminate between constitutive relations, based upon the agreement between the numerical predictions they produce and our experimental results. We find that the secondary circulation can be suppressed as wall friction is varied, also in agreement with numerical predictions. For large tilt angles we observe the abrupt onset of circulation for parameters where circulation was previously suppressed. Finally, we observe that for large tilt angles the fluctuations in velocity grow, independent of the onset of circulation.
We discuss in this work the validity of the theoretical solution of the nonlinear Couette flow for a granular impurity obtained in a recent work [preprint arXiv:0802.0526], in the range of large inelasticity and shear rate. We show there is a good ag reement between the theoretical solution and Monte Carlo simulation data, even under these extreme conditions. We also discuss an extended theoretical solution that would work for large inelasticities in ranges of shear rate $a$ not covered by our previous work (i.e., below the threshold value $a_{th}$ for which uniform shear flow may be obtained) and compare also with simulation data. Preliminary results in the simulations give useful insight in order to obtain an exact and general solution of the nonlinear Couette flow (both for $age a_{th}$ and $a<a_{th}$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا