ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized spin Hall effect in Helium three-A and other p-wave paired Fermi systems

133   0   0.0 ( 0 )
 نشر من قبل Jun Goryo
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose the quantized spin Hall effect (SHE) in the vortex state of a rotating p-wave paired Fermi system in an inhomogeneous magnetic field and in a weak periodic potential. It is the three dimensional extension of the spin Hall effect for a 3He-A superfluid film studied in Ref. [1]. It may also be considered as a generalization of the 3D quantized charge Hall effect of Bloch electrons in Ref. [2] to the spin transport. The A-phase of 3He or, more generally, the p-wave paired phase of a cold Fermi atomic gas, under suitable conditions should be a good candidate to observe the SHE, because the system has a conserved spin current (with no spin-orbit couplings).

قيم البحث

اقرأ أيضاً

70 - Jun Goryo 2010
Recently, the measurement of the polar Kerr effect (PKE) in the quasi two-dimensional superconductor Sr2RuO4, which is motivated to observe the chirality of px + i py-wave pairing, has been reported. We clarify that the PKE has intrinsic and extrinsi c (disorder-induced) origins. The extrinsic contribution would be dominant in the PKE experiment.
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations , which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
We report on fundamental properties of superfluids with d-wave pairing symmetry. We consider neutral atomic Fermi gases in a harmonic trap, the pairing being produced by a Feshbach resonance via a d-wave interaction channel. A Ginzburg-Landau (GL) fu nctional is constructed which is symmetry constrained for five component order parameters (OP). We find OP textures in the cyclic phase and stability conditions for a non-Abelian fractional 1/3-vortex under rotation. It is proposed how to create the intriguing 1/3-vortex experimentally in atomic gases via optical means.
Generic chiral superconductors with three-dimensional electronic structure have nodal gaps and are not strictly topological. Nevertheless, they exhibit a spontaneous thermal Hall effect (THE), i.e. a transverse temperature gradient in response to a h eat current even in the absence of an external magnetic field. While in some cases this THE can be quantized analogous to the Quantum Hall effect, this is not the case for nodal superconductors in general. In this study we determine the spontaneous THE for tight binding models with tetragonal and hexagonal crystal symmetry with chiral $p$- and d-wave superconducting phase. At the zero-temperature limit, the thermal Hall conductivity $ kappa_{xy} $ provides information on the structure of the gap function on the Fermi surface and the Andreev bound states on the surface. The temperature dependence at very low temperatures is determined by the types of gap nodes, point or line nodes, leading to characteristic power law behaviors in the temperature, as known for other quantities such as specific heat or London penetration depth. The generic behavior is discussed on simple models analytically, while the analysis of the tight-binding models is given numerically.
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Ab elian topological phase with chiral Majorana and charge modes at the boundary. Recent experiments suggest the existence of a proximate nematic phase at $ u=5/2$. This finding motivates us to consider an inhomogeneous paired state - a $p_x+ip_y$ pair-density-wave (PDW) - whose melting could be the origin of the observed liquid-crystalline phases. This state can viewed as an array of domain and anti-domain walls of the $p_x+i p_y$ order parameter. We show that the nodes of the PDW order parameter, the location of the domain walls (and anti-domain walls) where the order parameter changes sign, support a pair of symmetry-protected counter-propagating Majorana modes. The coupling behavior of the domain wall Majorana modes crucially depends on the interplay of the Fermi energy $E_{F}$ and the PDW pairing energy $E_{textrm{pdw}}$. The analysis of this interplay yields a rich set of topological states. The pair-density-wave order state in paired FQH system provides a fertile setting to study Abelian and non-Abelian FQH phases - as well as transitions thereof - tuned by the strength of the paired liquid crystalline order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا