ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures on Membranes

162   0   0.0 ( 0 )
 نشر من قبل Monica Olvera de la Cruz
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a mixture of one neutral and two oppositely charged types of molecules confined to a surface. Using analytical techniques and molecular dynamics simulations, we construct the phase diagram of the system and exhibit the coexistence between a patterned solid phase and a charge-dilute phase. The patterns in the solid phase arise from competition between short-range immiscibility and long-range electrostatic attractions between the charged species. The coexistence between phases leads to observations of stable patterned domains immersed in a neutral matrix background.

قيم البحث

اقرأ أيضاً

We investigated the phase separation of dioleoylphosphatidylserine (DOPS) and dipalmitoylphosphatidylcholine (DPPC) in giant unilamellar vesicles in hypotonic solution using fluorescence and confocal laser scanning microscopy. Although phase separati on in charged lipid membranes is generally suppressed by the electrostatic repulsion between the charged headgroups, osmotic stress can promote the formation of charged lipid domains. Interestingly, we observed three-phase coexistence even in DOPS/DPPC binary lipid mixtures. The three phases were DPPC-rich, dissociated DOPS-rich, and nondissociated DOPS-rich phases. The two forms of DOPS were found to coexist owing to the ionization of the DOPS headgroup, such that the system could be regarded as quasi-ternary. The three formed phases with differently ionized DOPS domains were successfully identified experimentally by monitoring the adsorption of positively charged particles. In addition, coarse-grained molecular dynamics simulations confirmed the stability of the three-phase coexistence. Attraction mediated by hydrogen bonding between protonated DOPS molecules and reduction of the electrostatic interactions at the domain boundaries stabilized the three-phase coexistence.
Recent studies have highlighted the sensitivity of active matter to boundaries and their geometries. Here we develop a general theory for the dynamics and statistics of active particles on curved surfaces and illustrate it on two examples. We first s how that active particles moving on a surface with no ability to probe its curvature only exhibit steady-state inhomogeneities in the presence of orientational order. We then consider a strongly confined 3D ideal active gas and compute its steady-state density distribution in a box of arbitrary convex shape.
We introduce an active matter model composed of sterically interacting particles which absorb resources from a substrate and move in response to resource gradients. For varied ratios of absorption rate to substrate recovery rate, we find a variety of phases including periodic waves, partial clustering, stochastic motion, and a frozen state. If passive particles are added, they can form crystalline clusters in an active fluid. This model could be implemented using colloidal systems on feedback landscapes and can provide a soft matter realization of excitable media and ecological systems.
A simple model was constructed to describe the polar ordering of non-centrosymmetric supramolecular aggregates formed by self assembling triblock rodcoil polymers. The aggregates are modeled as dipoles in a lattice with an Ising-like penalty associat ed with reversing the orientation of nearest neighbor dipoles. The choice of the potentials is based on experimental results and structural features of the supramolecular objects. For films of finite thickness, we find a periodic structure along an arbitrary direction perpendicular to the substrate normal, where the repeat unit is composed of two equal width domains with dipole up and dipole down configuration. When a short range interaction between the surface and the dipoles is included the balance between the up and down dipole domains is broken. Our results suggest that due to surface effects, films of finite thickness have a none zero macroscopic polarization, and that the polarization per unit volume appears to be a function of film thickness.
Phase separation in binary mixtures in the presence of Janus particles has been studied in terms of a Cahn-Hilliard model coupled to the Langevin equations describing the particle dynamics. We demonstrate that the phase separation process is arrested leading to unexpected regular stripe patterns in the concentration field. The underlying pattern forming mechanism has been elucidated: The twofold absorption properties on the surface of Janus particles with respect to the two components of a binary mixture trigger in their neighborhood spatial concentration variations. They result in an effective interaction between the particles mediated by the binary mixture. Our findings open a route to design composite materials with nanoscale lamellar morphologies where the pattern wavelength can be tuned by changing the wetting properties of the Janus particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا