ترغب بنشر مسار تعليمي؟ اضغط هنا

Topologically Linked Crystals

77   0   0.0 ( 0 )
 نشر من قبل Toru Matsuura
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discovered a new class of topological crystals, namely linked rings of crystals. Two rings of tantalum triselenide (TaSe3) single crystals were linked to each other while crystal growing. The topology of the crystal form is called a Hopf link, which is the simplest link involving just two component unknots linked together exactly once. The feature of the crystals is not covered by the conventional crystallography.



قيم البحث

اقرأ أيضاً

We define topological time crystals, a dynamical phase of periodically driven quantum many-body systems capturing the coexistence of topological order with the spontaneous breaking of discrete time-translation symmetry. We show that many-body localiz ation can stabilize this phase against generic perturbations and establish some of its key features and signatures. We link topological and ordinary time crystals through three complementary perspectives: higher-form symmetries, quantum error-correcting codes, and a holographic correspondence. We also propose an experimental realization of a surface-code-based topological time crystal for the Google Sycamore processor.
We construct analytic (3+1)-dimensional inhomogeneous and topologically non-trivial pion systems using chiral perturbation theory. We discuss the effect of isospin asymmetry with vanishing electromagnetic interactions as well as some particular confi gurations with non-vanishing electromagnetic interactions. The inhomogeneous configurations of the pion fields are characterized by a non-vanishing topological charge that can be identified with baryons surrounded by a cloud of pions. This system supports a topologically protected persistent superflow. When the electromagnetic field is turned on the superflow corresponds to an electromagnetic supercurrent.
The measured conductance distribution for single molecule benzenediamine-gold junctions, based on 59,000 individual conductance traces recorded while breaking a gold point contact in solution, has a clear peak at 0.0064 G$_{0}$ with a width of $pm$ 4 0%. Conductance calculations based on density functional theory (DFT) for 15 distinct junction geometries show a similar spread. Differences in local structure have a limited influence on conductance because the amine-Au bonding motif is well-defined and flexible. The average calculated conductance (0.046 G$_{0}$) is seven times larger than experiment, suggesting the importance of many-electron corrections beyond DFT.
We have performed a series of measurements on the low temperature behavior of a magnetic nano-particle system. Our results show striking memory effects in the dc magnetization. Dipolar interactions among the nano-particles {em suppress} the memory ef fect. We explain this phenomenon by the superposition of different super paramagnetic relaxation times of single domain magnetic nano- particles. Moreover, we observe a crossover in the temperature dependence of coercivity. We show that a dilute dispersion of particles with a flat size distribution yields the best memory.
The intriguing properties, especially Dirac physics in graphene, have inspired the pursuit of two-dimensional materials in honeycomb structure. Here we achieved a monolayer transition metal monochalcogenide AgTe on Ag(111) by tellurization of the sub strate. High-resolution scanning tunneling microscopy, combined with low-energy electron diffraction, angle-resolved photoemission spectroscopy, and density functional theory calculations, demonstrates the planar honeycomb structure of AgTe. The first principle calculations further reveal that, protected by the in-plane mirror reflection symmetry, two Dirac node-line Fermions exist in the electronic structures of free-standing AgTe when spin-orbit coupling (SOC) is ignored. While in fact the SOC leads to the gap opening, and resulting in the emergence of the topologically nontrivial quantum spin Hall edge state. Importantly, our experiments evidence the chemical stability of the monolayer AgTe in ambient conditions. It is possible to study AgTe by more ex-situ measurements and even to apply it in novel electronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا