ﻻ يوجد ملخص باللغة العربية
It is proposed in this study to observe the influence of P2O5 on the formation of the apatite-like layer in a bioactive glass via a complete PIXE characterization. A glass in the SiO2-CaO-P2O5 ternary system was elaborated by sol-gel processing. Glass samples were soaked in biological fluids for periods up to 10 days. The surface changes were characterized using Particle Induced X-ray Emission (PIXE) associated to Rutherford Backscattering Spectroscopy (RBS), which are efficient methods for multielemental analysis. Elemental maps of major and trace elements were obtained at a micrometer scale and revealed the bone bonding ability of the material. The formation of a calcium phosphate-rich layer containing magnesium occurs after a few days of interaction. We demonstrate that the presence of phosphorus in the material has an impact on the development and the formation rate of the bone-like apatite layer. Indeed, the Ca/P atomic ratio at the glass/biological fluids interface is closer to the nominal value of pure apatite compared to P2O5 free glasses. It would permit, in vivo, an improved chemical bond between the biomaterials and bone.
For a long time, RBS and PIXE techniques have been used in the field of cultural heritage. Although the complementarity of both techniques has long been acknowledged, its full potential has not been yet developed due to the lack of general purpose so
The evolution of viscoelastic properties near the sol-gel transition is studied by performing oscillatory rheological measurements on two different types of systems: a colloidal dispersion and a thermo-responsive polymer solution under isothermal and
Quaternary CaO-MgO-Al2O3-SiO2 glasses are important constituents of the Earths lower crust and mantle, and they also have important industrial applications such as in metallurgical processes, concrete production and emerging low-CO2 cement technologi
In this contribution, the effect of P2O5 and SiO2 addition on the phase, microstructure, and electrical properties of KNbO3 was studied. Sample powders with the general formula (1-x)KNbO3.xP2O5 (x = 0.03, 0.05) and (1-x)KNbO3.xSiO2 (x = 0.1) were pre
Pt/Ti metallisation bilayers are used as bottom electrodes for ferroelectric thin films. During deposition of the ferroelectric films, these electrodes are exposed to elevated temperatures causing modifications of the Pt/Ti bottom electrode. Diffusio