ﻻ يوجد ملخص باللغة العربية
Quaternary CaO-MgO-Al2O3-SiO2 glasses are important constituents of the Earths lower crust and mantle, and they also have important industrial applications such as in metallurgical processes, concrete production and emerging low-CO2 cement technologies. In particular, these applications rely heavily on the composition-structure-reactivity relationships for CMAS glasses, which are not yet well established. In this study, we developed a robust method that combines force-field molecular dynamics (MD) simulations and density functional theory (DFT) calculations with X-ray/neutron scattering experiments to resolve the atomic structure of a CMAS glass. The final structural representation generated using this method is not only thermodynamically favorable (according to DFT calculations) but also agrees with experiments (including X-ray/neutron scattering data as well as literature data). Detailed analysis of the final structure (including partial pair distribution functions, coordination number, oxygen environment) enabled existing discrepancies in the literature to be reconciled and has revealed new structural information on the CMAS glass, specifically, (i) the unambiguous assignment of medium-range atomic ordering, (ii) the preferential role of Ca atoms as charge compensators and Mg atoms as network modifiers, (iii) the proximity of Mg atoms to free oxygen sites, and (iv) clustering of Mg atoms. Overall, this new structural information will enhance our mechanistic understanding on CMAS glass dissolution behavior, including dissolution-related mechanisms occurring during the formation of low-CO2 cements.
It is proposed in this study to observe the influence of P2O5 on the formation of the apatite-like layer in a bioactive glass via a complete PIXE characterization. A glass in the SiO2-CaO-P2O5 ternary system was elaborated by sol-gel processing. Glas
We employ scanning probe microscopy to reveal atomic structures and nanoscale morphology of graphene-based electronic devices (i.e. a graphene sheet supported by an insulating silicon dioxide substrate) for the first time. Atomic resolution STM image
The local structure of CeTe3 in the incommensurate charge density wave (IC-CDW) state has been obtained using atomic pair distribution function (PDF) analysis of x-ray diffraction data. Local atomic distortions in the Te-nets due to the CDW are large
An extensive theoretical investigation of the nonpolar (10$bar{1}$0) and (11$bar{2}$0) surfaces as well as the polar zinc terminated (0001)--Zn and oxygen terminated (000$bar{1}$)--O surfaces of ZnO is presented. Particular attention is given to the
CeCuAl3 and CeAuAl3, crystallizing in the non-centrosymmetric BaNiSn3 tetragonal structure, are known mainly for their unusual neutron scattering spectra involving additional excitations ascribed to vibron quasi-bound quantum state in CeCuAl3 and ant