ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise at a Fermi-edge singularity

57   0   0.0 ( 0 )
 نشر من قبل Frank Hohls
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present noise measurements of self-assembled InAs quantum dots at high magnetic fields. In comparison to I-V characteristics at zero magnetic field we notice a strong current overshoot which is due to a Fermi-edge singularity. We observe an enhanced suppression in the shot noise power simultaneous to the current overshoot which is attributed to the electron-electron interaction in the Fermi-edge singularity.

قيم البحث

اقرأ أيضاً

We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down el ectron, differ in magnitude, linewidth and filling factor dependence. We show that these differences can be explained as resulting from creation of a Mahan exciton in one case, and of a power law Fermi edge singularity in the other.
We report on the observation of Fermi edge enhanced resonant tunneling transport in a II-VI semiconductor heterostructure. The resonant transport through a self assembled CdSe quantum dot survives up to 45 K and probes a disordered two dimensional (2 D) like emitter which dominates the magnetic field dependence of the transport. An enhancement of the tunnel current through many particle effects is clearly observable, even without an applied magnetic field. Additional fine structure in the tunneling current suggests that while conventional Fermi edge singularity theory successfull reproduces the general features of the increased transmission, it is not adequate to describe all details of the current enhancement.
Magnetic impurities with sufficient anisotropy could account for the observed strong deviation of the edge conductance of 2D topological insulators from the anticipated quantized value. In this work we consider such a helical edge coupled to dilute i mpurities with an arbitrary spin $S$ and a general form of the exchange matrix. We calculate the backscattering current noise at finite frequencies as a function of the temperature and applied voltage bias. We find that in addition to the Lorentzian resonance at zero frequency, the backscattering current noise features Fano-type resonances at non-zero frequencies. The widths of the resonances are controlled by the spectrum of corresponding Korringa rates. At a fixed frequency the backscattering current noise has non-monotonic behaviour as a function of the bias voltage.
We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot- normal metal junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not have a definite charge in this chargele ss Fermi liquid, in case of particle-hole symmetry, a mapping to the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudo-charge. In contrast to other correlated Fermi-liquids, the back scattering noise reveals an effective charge equal to the charge of Cooper pairs, $e^* = 2e$. In addition,we find a strong suppression of noise when the linear conductance is unitary, even for its non-linear part.
We propose a conceptually new way to gather information on the electron bands of buried metal(semiconductor)/insulator interfaces. The bias dependence of low frequency noise in Fe$_{1-x}$V$_{x}$/MgO/Fe (0 $<$ x $<$ 0.25) tunnel junctions show clear a nomalies at specific applied voltages, reflecting electron tunneling to the band edges of the magnetic electrodes. The change in magnitude of these noise anomalies with the magnetic state allows evaluating the degree of spin mixing between the spin polarized bands at the ferromagnet/insulator interface. Our results are in qualitative agreement with numerical calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا