ﻻ يوجد ملخص باللغة العربية
A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP or (Al,Ga)As which opens a wide area of possibilities for optimizing the host composition towards higher ferromagnetic Curie temperatures. Here we explore theoretically ferromagnetism and Mn incorporation in Ga(As,P) and (Al,Ga)As ternary hosts. While alloying (Ga,Mn)As with Al has only a small effect on the Curie temperature we predict a sizable enhancement of Curie temperatures in the smaller lattice constant Ga(As,P) hosts. Mn-doped Ga(As,P) is also favorable, as compared to (Al,Ga)As, with respect to the formation of carrier and moment compensating interstitial Mn impurities. In (Ga,Mn)(As,P) we find a marked decrease of the partial concentration of these detrimental impurities with increasing P content.
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical
We report high resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults which are present in the (111) and (11-1) planes and absent in the (-111) and (1-11)
The spin polarization of the electron current in a p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a light-emitting diode, has been studied theoretically. A series of self-consistent simulations determines the charge distribution, th
(Ga,Mn)As is at the forefront of research exploring the synergy of magnetism with the physics and technology of semiconductors, and has led to discoveries of new spin-dependent phenomena and functionalities applicable to a wide range of material syst
(Ga,Mn)As in wurtzite crystal structure, is coherently grown by molecular beam epitaxy on the {1100} side facets of wurtizte (Ga,In)As nanowires and further encapsulated by (Ga,Al)As and low temperature GaAs. For the first time a true long-range ferr