ﻻ يوجد ملخص باللغة العربية
The spin polarization of the electron current in a p-(Ga,Mn)As-n-(Al,Ga)As-Zener tunnel diode, which is embedded in a light-emitting diode, has been studied theoretically. A series of self-consistent simulations determines the charge distribution, the band bending, and the current-voltage characteristics for the entire structure. An empirical tight-binding model, together with the Landauer- Buttiker theory of coherent transport has been developed to study the current spin polarization. This dual approach allows to explain the experimentally observed high magnitude and strong bias dependence of the current spin polarization.
A remarkable progress towards functional ferromagnetic semiconductor materials for spintronics has been achieved in p-type (Ga,Mn)As. Robust hole-mediated ferromagnetism has, however, been observed also in other III-V hosts such as antimonides, GaP o
The large tunneling anisotropic magneto-resistance of a single $p^{++}$-(Ga,Mn)As/$n^{+}$-GaAs Zener-Esaki diode is evidenced in a perpendicular magnetic field over a large temperature and voltage range. Under an applied bias, the tunnel junction tra
We present magnetic and tunnel transport properties of (Ga,Mn)As/(In,Ga)As/(Ga,Mn)As structure before and after adequate annealing procedure. The conjugate increase of magnetization and tunnel magnetoresistance obtained after annealing is shown to be
We report on the determination of micromagnetic parameters of epilayers of the ferromagnetic semiconductor (Ga,Mn)As, which has easy axis in the sample plane, and (Ga,Mn)(As,P) which has easy axis perpendicular to the sample plane. We use an optical
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be