ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics in copper metaborate $CuB_2 O_4$ studied by muon spin relaxation

100   0   0.0 ( 0 )
 نشر من قبل Atsuko Fukaya
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Copper metaborate CuB$_2$O$_{4}$ was studied by muon spin relaxation measurements in order to clarify its static and dynamic magnetic properties. The time spectra of muon spin depolarization suggest that the local fields at the muon site contain both static and fluctuating components in all ordered phases down to 0.3 K. In the weak ferromagnetic phase (20 K~$>T>$~9.3 K), the static component is dominant. On the other hand, upon cooling the fluctuating component becomes dominant in the incommensurate helix phase (9.3K > T > 1.4K). The dynamical fluctuations of the local fields persist down to 0.3K, where a new incommensurate phase (T < 1.4K) is expected to appear. This result suggests that spins fluctuate even at T to 0. We propose two possible origins of the remnant dynamical spin fluctuations: frustration of the exchange interactions and the dynamic behavior of the soliton lattice.



قيم البحث

اقرأ أيضاً

102 - J. Xu , C. Balz , C. Baines 2016
We present a muon spin relaxation study on the Ising pyrochlore Nd$_2$Zr$_2$O$_7$ which develops an all-in-all-out magnetic order below 0.4~K. At 20~mK far below the ordering transition temperature, the zero-field muon spin relaxation spectra show no static features and can be well described by a dynamical Gaussian-broadened Gaussian Kubo-Toyabe function indicating strong fluctuations of the ordered state. The spectra of the paramagnetic state (below 4.2~K) reveal anomalously slow paramagnetic spin dynamics and show only small difference with the spectra of the ordered state. We find that the fluctuation rate decreases with decreasing temperature and becomes nearly temperature independent below the transition temperature indicating persistent slow spin dynamics in the ground state. The field distribution width shows a small but sudden increase at the transition temperature and then becomes almost constant. The spectra in applied longitudinal fields are well fitted by the conventional dynamical Gaussian Kubo-Toyabe function, which further supports the dynamical nature of the ground state. The fluctuation rate shows a peak as a function of external field which is associated with a field-induced spin-flip transition. The strong dynamics in the ordered state are attributed to the transverse coupling of the Ising spins introduced by the multipole interactions.
319 - Risdiana , T. Adachi , N. Oki 2007
Muon-spin-relaxation measurements have been performed for the partially Zn-substituted La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ with y=0-0.10 in the overdoped regime up to x=0.30. In the 3 % Zn-substituted samples up to x=0.27, exponential-like depolarization of muon spins has been observed at low temperatures, indicating Zn-induced slowing-down of the Cu-spin fluctuations. The depolarization rate decreases with increasing x and almost no fast depolarization of muon spins has been observed for x=0.30 where superconductivity disappears. The present results suggest that the dynamical stripe correlations exist in the whole superconducting regime of La_2-x_Sr_x_CuO_4_ and that there is no quantum critical point at x~0.19.
We demonstrate that quantum-critical spin dynamics can be probed in high magnetic fields using muon-spin relaxation ($mu^{+}$SR). Our model system is the strong-leg spin ladder bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY). In the gapless Tom onaga-Luttinger liquid phase we observe finite-temperature scaling of the $mu^{+}$SR $1/T_1$ relaxation rate which allows us to determine the Luttinger parameter $K$. We discuss the benefits and limitations of local probes compared with inelastic neutron scattering.
Spin orientation of photoexcited carriers and their energy relaxation is investigated in bulk Ge by studying spin-polarized recombination across the direct band gap. The control over parameters such as doping and lattice temperature is shown to yield high polarization degree, namely larger than 40%, as well as a fine-tuning of the angular momentum of the emitted light with a complete reversal between right- and left-handed circular polarization. By combining the measurement of the optical polarization state of band-edge luminescence and Monte Carlo simulations of carrier dynamics, we show that these very rich and complex phenomena are the result of the electron thermalization and cooling in the multi-valley conduction band of Ge. The circular polarization of the direct-gap radiative recombination is indeed affected by energy relaxation of hot electrons via the X valleys and the Coulomb interaction with extrinsic carriers. Finally, thermal activation of unpolarized L valley electrons accounts for the luminescence depolarization in the high temperature regime.
168 - Risdiana , T. Adachi , N. Oki 2010
Muon-spin-relaxation (muSR) measurements have been performed for the partially Zn-substituted electron-doped high-T_c_ superconductor Pr_0.86_LaCe_0.14_Cu_1-y_Zn_y_O_4+alpha-delta_ with y=0-0.05 and the reduced oxygen content delta=0-0.09, in order t o investigate nonmagnetic Zn-impurity effects on the Cu-spin dynamics. For all the measured samples with delta=0.01-0.09, it has been found that a fast depolarization of muon spins is observed below 100 K due to the effect of Pr^3+^ moments and that the muSR time spectrum in the long-time region above 5 mu-sec increases with decreasing temperature at low temperatures below 30 K possibly due to slowing down of the Cu-spin fluctuations assisted by Pr^3+^ moments. No Zn-induced slowing down of the Cu-spin fluctuations has been observed for moderately oxygen-reduced samples with delta=0.04-0.09, which is very different from the muSR results of La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_. The possible reason may be that there are no dynamical stripe correlations of spins and electrons in the electron-doped high-T_c_ cuprates or that the effect of Pr^3+^ moments on the muSR spectra is stronger than that of a small amount of Zn impurities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا