ﻻ يوجد ملخص باللغة العربية
Muon-spin-relaxation measurements have been performed for the partially Zn-substituted La_2-x_Sr_x_Cu_1-y_Zn_y_O_4_ with y=0-0.10 in the overdoped regime up to x=0.30. In the 3 % Zn-substituted samples up to x=0.27, exponential-like depolarization of muon spins has been observed at low temperatures, indicating Zn-induced slowing-down of the Cu-spin fluctuations. The depolarization rate decreases with increasing x and almost no fast depolarization of muon spins has been observed for x=0.30 where superconductivity disappears. The present results suggest that the dynamical stripe correlations exist in the whole superconducting regime of La_2-x_Sr_x_CuO_4_ and that there is no quantum critical point at x~0.19.
Muon-spin-relaxation (muSR) measurements have been performed for the partially Zn-substituted electron-doped high-T_c_ superconductor Pr_0.86_LaCe_0.14_Cu_1-y_Zn_y_O_4+alpha-delta_ with y=0-0.05 and the reduced oxygen content delta=0-0.09, in order t
We have investigated effects of Zn and Ni on the Cu-spin dynamics and superconductivity from the zero-field muon-spin-relaxation (ZF-muSR) and magnetic-susceptibility, chi, measurements for La_2-x_Sr_x_Cu_1-y_(Zn,Ni)_y_O_4_ with x=0.15-0.20, changing
In order to investigate the low-energy antiferromagnetic Cu-spin correlation and its relation to the superconductivity, we have performed muon spin relaxation (muSR) measurements using single crystals of the electron-doped high-Tc cuprate Pr_1-x_LaCe
We report muon-spin relaxation measurements on SrFeAsF, which is the parent compound of a newly discovered iron-arsenic-fluoride based series of superconducting materials. We find that this material has very similar magnetic properties to LaFeAsO, su
Copper metaborate CuB$_2$O$_{4}$ was studied by muon spin relaxation measurements in order to clarify its static and dynamic magnetic properties. The time spectra of muon spin depolarization suggest that the local fields at the muon site contain both