ﻻ يوجد ملخص باللغة العربية
$^{1}$H-NMR spin-echo measurements of the spin-echo decay $M(2tau)$ with a decay rate 1/$T_{2}$ and the frequency shift $Delta u/ u_{0}$ under applied magnetic field $mathbf{B}$$_{0}$ = 9 T along the a-axis over a temperature range 2.0$-$180 K are reported for a single crystal of the organic conductor $lambda$-(BETS)$_{2}$FeCl$_{4}$. It provides the spin dynamic and static properties in the paramagnetic metal (PM) and antiferromagnetic insulator (AFI) states as well as across the PM$-$AFI phase transition. A large slow beat structure in the spin-echo decay is observed with a typical beat frequency of $f$ $sim$ 7 kHz and it varies across the spectrum. Its origin is attributed to the $^{1}$H$-$$^{1}$H dipole interactions rather than to the much larger dipolar field contribution from the Fe$^{3+}$ electrons (spin $S$ = 5/2). A simple phenomenological model provides an excellent fit to the data. The dominant $^{1}$H-NMR frequency shift comes from the dipolar field from the 3d Fe$^{3+}$ ions, and the Fe$^{3+}$ $-$ Fe$^{3+}$ exchange interactions ($J_{0}$) ($J_{0} $ includes the d$-$d exchange interactions through the $pi-$electrons) have a substantial effect to the local field at the proton sites expecially at low temperatures. A good fit is obtained with $J_{0}$ = - 1.7 K. The data of the spin-echo decay rate 1/$T_{2}$ indicates that there is a significant change in the slow fluctuations of the local magnetic field at the $^{1}$H-sites on traversing the PM to AFI phase. This evidence supports earlier reports that the PM$-$AFI phase transition in $lambda$-(BETS)$_{2}% $FeCl$_{4} $ is driven magnetically and first order.
We have performed $^{77}$Se NMR on a single crystal sample of the field induced superconductor $lambda$-(BETS)$_{2}$FeCl$_{4}$. Our results obtained in the paramagnetic state provide a microscopic insight on the exchange interaction $J$ between the s
The NMR relaxation rate and the static spin susceptibility in graphene are studied within a tight-binding description. At half filling, the NMR relaxation rate follows a power law as $T^2$ on the particle-hole symmetric side, while with a finite chem
We have performed $^{69,71}$Ga nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) and muon spin rotation/resonance on the quasi two-dimensional antiferromagnet (AFM) NiGa$_2$S$_4$, in order to investigate its spin dynamics and ma
We report muon spin relaxation (muSR) and magnetic susceptibility investigations of two Ti3+ chain compounds which each exhibit a spin gap at low temperature, NaTiSi2O6 and TiOCl. From these we conclude that the spin gap in NaTiSi2O6 is temperature i
We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular lattice antiferromagnet Ba$_3$CoSb$_2$O$_9$. Besides confirming that the Co$^{2+}$ magnetic moments lie in the ab plane for zero magnetic field, we deter