ﻻ يوجد ملخص باللغة العربية
We report direct electrical detection of spin pumping, using a lateral normal metal/ferromagnet/normal metal device, where a single ferromagnet in ferromagnetic resonance pumps spin polarized electrons into the normal metal, resulting in spin accumulation. The resulting backflow of spin current into the ferromagnet generates a d.c. voltage due to the spin dependent conductivities of the ferromagnet. By comparing different contact materials (Al and /or Pt), we find, in agreement with theory, that the spin related properties of the normal metal dictate the magnitude of the d.c. voltage.
We describe electrical detection of spin pumping in metallic nanostructures. In the spin pumping effect, a precessing ferromagnet attached to a normal-metal acts as a pump of spin-polarized current, giving rise to a spin accumulation. The resulting s
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for
We present a theoretical model that describes electrical spin-detection at a ferromagnet/semiconductor interface. We show that the sensitivity of the spin detector has strong bias dependence which, in the general case, is dramatically different from
The dc voltage obtained from the inverse spin Hall effect (iSHE) due to spin pumping in ferromagnet/normal-metal (NM) bilayers can be unintentionally superimposed with magnetoresistive rectification of ac charge currents in the ferromagnetic layer. W
We systematically measured the DC voltage V_ISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet/platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite sp