ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-photon structures in the sub-cyclotron-frequency range in microwave photoresistance of a two-dimensional electron system

103   0   0.0 ( 0 )
 نشر من قبل X. L. Lei
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frequency dependence of the peak-valley pairs occurring in the magnetoresistivity of a two-dimensional electron system under enhanced microwave irradiation, which are considered to associate with multiphoton processes, is examined in the sub-cyclotron-frequency range, based on a theoretical treatment with photon-assisted electron transitions due to impurity scattering. It is shown that with equivalent radiation power (producing the same height of the main oscillation peak), much more and stronger multi-photon structures show up at lower frequency, and when frequency increases all these structures rapidly weaken, diminish and finally disappear completely. These are in agreement with the recent experimental observation [cond-mat/0608633].



قيم البحث

اقرأ أيضاً

160 - Z. Q. Yuan , C. L. Yang , R. R. Du 2006
The microwave (MW) photoresistance has been measured on a high-mobility two-dimensional electron gas patterned with a shallow triangular antidot lattice, where both the MW-induced resistance oscillations (MIRO) and magnetoplasmon (MP) resonance are o bserved superposing on sharp commensurate geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are decoupled from each other in these experiments.
It is established that cyclotron resonance (CR) in a high-quality GaAs/AlGaAs two-dimensional electron system (2DES) originates as a textit{pure} resonance, that does not hybridize with dimensional magnetoplasma excitations. The magnetoplasma resonan ces form a fine structure of the CR. The observed fine structure of the CR results from the interplay between coherent radiative and incoherent collisional mechanisms of 2D plasma relaxation. We show that the range of 2DES filling factors from which the phenomenon arises is intimately connected to the fundamental fine-structure constant.
The microwave photoresistance of a two-dimensional topological insulator in a HgTe quantum well with an inverted spectrum has been experimentally studied under irradiation at frequencies of 110-169 GHz. Two mechanisms of formation of this photoresist ance have been revealed. The first mechanism is due to transitions between the dispersion branches of edge current states, whereas the second mechanism is caused by the action of radiation on the bulk of the quantum well.
We report an observation of magnetooscillations of the microwave power transmitted through the high mobility two-dimensional electron system hosted by a GaAs quantum well. The oscillations reflect an enhanced absorption of radiation at high harmonics of the cyclotron resonance and follow simultaneously measured microwave-induced resistance oscillations (MIRO) in the dc transport. While the relative amplitude (up to 1%) of the transmittance oscillations appears to be small, they represent a significant (>50%) modulation of the absorption coefficient. The analysis of obtained results demonstrates that the low-B decay, magnitude, and polarization dependence of the transmittance oscillations accurately follow the theory describing photon-assisted scattering between distant disorder-broadened Landau levels. The extracted sample parameters reasonably well describe the concurrently measured MIRO. Our results provide an insight into the MIRO polarization immunity problem and pave the way to probe diverse high-frequency transport properties of high-mobility systems using precise transmission measurements.
Resonant microwave absorption of a two-dimensional electron system in an AlGaAs/GaAs heterostructure excited by a near-field technique was investigated. Along with collective magnetoplasmon modes, we observed resonance that precisely follows the cycl otron resonance (CR) position and revealed no signs of collective plasma depolarization shift. We show that the discovered CR mode is absent in the Faraday geometry, and is localized at the edge of the exciting metal electrode. Such behavior points in favor of the single-particle Azbel-Kaner nature of the discovered resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا