ﻻ يوجد ملخص باللغة العربية
Resonant microwave absorption of a two-dimensional electron system in an AlGaAs/GaAs heterostructure excited by a near-field technique was investigated. Along with collective magnetoplasmon modes, we observed resonance that precisely follows the cyclotron resonance (CR) position and revealed no signs of collective plasma depolarization shift. We show that the discovered CR mode is absent in the Faraday geometry, and is localized at the edge of the exciting metal electrode. Such behavior points in favor of the single-particle Azbel-Kaner nature of the discovered resonance.
It is established that cyclotron resonance (CR) in a high-quality GaAs/AlGaAs two-dimensional electron system (2DES) originates as a textit{pure} resonance, that does not hybridize with dimensional magnetoplasma excitations. The magnetoplasma resonan
We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range
We report an observation of magnetooscillations of the microwave power transmitted through the high mobility two-dimensional electron system hosted by a GaAs quantum well. The oscillations reflect an enhanced absorption of radiation at high harmonics
Terahertz spectroscopy experiments at magnetic fields and low temperatures were carried out on samples of different gate shapes processed on a high electron mobility GaAs/AlGaAs heterostructure. For a given radiation frequency, multiple magnetoplasmo
The frequency dependence of the peak-valley pairs occurring in the magnetoresistivity of a two-dimensional electron system under enhanced microwave irradiation, which are considered to associate with multiphoton processes, is examined in the sub-cycl