ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality of the Scaling Law for Ferroic Domains

105   0   0.0 ( 0 )
 نشر من قبل Gustau Catalan
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show how the periodicity of 180^{o} domains as a function of crystal thickness scales with the thickness of the domain walls both for ferroelectric and for ferromagnetic materials. We derive an analytical expression for the universal scaling factor and use this to calculate domain wall thickness and gradient coefficients (exchange constants) in some ferroic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nano-devices and periodically poled photonic crystals.

قيم البحث

اقرأ أيضاً

Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over experimental (finite) time-scale for the range of phase diagram with high values of pressure. We show that the structural ordering in glasses at such conditions is initiated through the nucleation mechanism, and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the scaled values of the nucleation time, $tau_1$ (average waiting time of the first nucleus with the critical size), in glassy systems as a function of the reduced temperature, $widetilde{T}$, are collapsed onto a single line reproducible by the power-law dependence. This scaling is supported by the simulation results for the model glassy systems for a wide range of temperatures as well as by the experimental data for the stoichiometric glasses at the temperatures near the glass transition.
122 - Nicola M. Pugno 2006
In this letter we derive a universal law for nanoindentation, considering different sizes and shapes of the indenter. The law matches as limit cases all the well-known hardness scaling laws proposed in the literature. But our finding can also explain their deviations experimentally observed at the nanoscale. An even more general scaling law is then formulated, also in the fast and slow dynamics; it is based only on the surface over volume ratio of the domain in which the energy flux occurs: thus, its application in different fields, also for chaotic and complex (e.g., biological) systems, is demonstrated.
The evolution of viscoelastic properties near the sol-gel transition is studied by performing oscillatory rheological measurements on two different types of systems: a colloidal dispersion and a thermo-responsive polymer solution under isothermal and non-isothermal conditions. While undergoing sol-gel transition, both the systems pass through a critical point. An approach to the critical point is characterized in terms of divergence of zero shear viscosity and the subsequent appearance of the low frequency modulus. In the vicinity of the critical gel state, both the viscosity and the modulus show a power-law dependence on relative distance from the critical point. Interestingly, the longest relaxation time has been observed to diverge symmetrically on both the sides of the critical point and also shows a power-law dependence on relative distance from the critical point. The critical (power-law) exponents of the zero-shear viscosity and modulus are observed to be related to the exponents of the longest relaxation time by the hyper scaling laws. The dynamic critical exponent has also been calculated from the growth of the dynamic moduli. Remarkably, the critical relaxation exponent and dynamic critical exponent predicted from the scaling laws precisely agree with the experimental values from the isothermal as well as non-isothermal experiments. The associated critical exponents show remarkable internal consistency and universality for different kinds of systems undergoing the sol-gel transition.
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current driven spintronic devices. The absence of Joule heating as well as the reduced spin wave damping in insulating ferromagnets has been suggested to enable the implementation of efficient logic devices. After the proof of concept for a logic majority gate based on the superposition of spin waves has been successfully demonstrated, further components are required to perform complex logic operations. A key component is a switch that corresponds to a conventional magnetoresistive spin valve. Here, we report on magnetization orientation dependent spin signal detection in collinear magnetic multilayers with spin transport by magnonic spin currents. We find in Y3Fe5O12|CoO|Co tri-layers that the detected spin signal depends on the relative alignment of Y3Fe5O12 and Co. This demonstrates a spin valve behavior with an effect amplitude of 120% in our systems. We demonstrate the reliability of the effect and investigate the origin by both temperature and power dependent measurements, showing that spin rectification effects and a magnetic layer alignment dependent spin transport effect result in the measured signal.
334 - G. Catalan , H. Bea , S. Fusil 2007
We have analyzed the morphology of ferroelectric domains in very thin films of multiferroic BiFeO3. Unlike the more common stripe domains observed in thicker films BiFeO3 or in other ferroics, the domains tend not to be straight, but irregular in sha pe, with significant domain wall roughening leading to a fractal dimensionality. Also contrary to what is usually observed in other ferroics, the domain size appears not to scale as the square root of the film thickness. A model is proposed in which the observed domain size as a function of film thickness can be directly linked to the fractal dimension of the domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا